import gradio as gr import spaces from transformers import Idefics3ForConditionalGeneration, AutoProcessor import torch from PIL import Image from datetime import datetime import numpy as np import os DESCRIPTION = """ # SmolVLM-trl-dpo-rlaif-v Demo This is a demo Space for a fine-tuned version of [SmolVLM](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct) trained using [rlaif-v dataset](https://huggingface.co/datasets/HuggingFaceH4/rlaif-v_formatted). The corresponding model is located [here](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct-DPO). For a full tutorial of fine-tuning using DPO, check out [this link](https://huggingface.co/learn/cookbook/index). """ model_id = "HuggingFaceTB/SmolVLM-Instruct" model = Idefics3ForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype=torch.bfloat16, #_attn_implementation="flash_attention_2", ) processor = AutoProcessor.from_pretrained(model_id) #adapter_path = "sergiopaniego/smolvlm-instruct-trl-dpo-rlaif-v" adapter_path = "HuggingFaceTB/SmolVLM-Instruct-DPO" model.load_adapter(adapter_path) def array_to_image_path(image_array): if image_array is None: raise ValueError("No image provided. Please upload an image before submitting.") # Convert numpy array to PIL Image img = Image.fromarray(np.uint8(image_array)) # Generate a unique filename using timestamp timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") filename = f"image_{timestamp}.png" # Save the image img.save(filename) # Get the full path of the saved image full_path = os.path.abspath(filename) return full_path @spaces.GPU def run_example(image, text_input=None): image_path = array_to_image_path(image) image = Image.fromarray(image).convert("RGB") messages = [ { "role": "user", "content": [ { "type": "image", "text": None, }, { "text": text_input, "type": "text" }, ], } ] # Preparation for inference text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs = [] if image.mode != 'RGB': image = image.convert('RGB') image_inputs.append([image]) inputs = processor( text=text, images=image_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") # Inference: Generation of the output generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text[0] css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="SmolVLM-Instruct-DPO Input"): with gr.Row(): with gr.Column(): input_img = gr.Image(label="Input Picture") text_input = gr.Textbox(label="Question") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") submit_btn.click(run_example, [input_img, text_input], [output_text]) demo.queue(api_open=False) demo.launch(debug=True)