MODEL_NAME="allenai/MolmoE-1B-0924" from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True) from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig from PIL import Image import requests # load the processor processor = AutoProcessor.from_pretrained( 'allenai/MolmoE-1B-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) # load the model model = AutoModelForCausalLM.from_pretrained( 'allenai/MolmoE-1B-0924', trust_remote_code=True, torch_dtype='auto', device_map='auto' ) # process the image and text inputs = processor.process( images=[Image.open(requests.get("https://picsum.photos/id/237/536/354", stream=True).raw)], text="Describe this image." ) # move inputs to the correct device and make a batch of size 1 inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} # generate output; maximum 200 new tokens; stop generation when <|endoftext|> is generated output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=200, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # only get generated tokens; decode them to text generated_tokens = output[0,inputs['input_ids'].size(1):] generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) # print the generated text print(generated_text) # >>> This photograph captures a small black puppy, likely a Labrador or a similar breed, # sitting attentively on a weathered wooden deck. The deck, composed of three... # import cv2 # class Solution(): # def __init__(self,prompt): # self.prompt= prompt # self.output_dir=None # # read a mp4 file and getting its frame at a particular interval. # def read_frame(self,file,interval=1): # video=cv2.VideoCapture(file) # fps= video.get(cv2.CAP_PROP_FPS) # frame_interval= fps*interval# fps= 24 frame/sec and interval = 1 sec so frame interval = 24 frame # while True: # success, frame=video.read() # if not success: # break # if frame % frame_interval==0: # # process this frame # """ # .. to do # """ # def find(self,input_message): # read a .mp4 file # get a interval N spaced