import gradio as gr from transformers import VisionEncoderDecoderModel, AutoImageProcessor, BertTokenizerFast import requests from PIL import Image urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU'] for idx, url in enumerate(urls): image = Image.open(requests.get(url, stream=True).raw) image.save(f"image_{idx}.png") image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-base-patch4-window7-224") tokenizer = tokenizer =BertTokenizerFast.from_pretrained("onlplab/alephbert-base") model = VisionEncoderDecoderModel.from_pretrained("sivan22/hdd-words-ocr") def process_image(image): # prepare image pixel_values = image_processor(image, return_tensors="pt").pixel_values # generate (no beam search) generated_ids = model.generate(pixel_values) # decode generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_text title = "הדגמה: פענוח כתב יד באמצעות בינה מלאכותית" description = "על בסיס מודל swin בצד התמונה, ומודל alephbert בצד הטקסט." article = "
sivan22
" examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]] #css = """.output_image, .input_image {height: 600px !important}""" iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Textbox(), title=title, description=description, article=article, examples=examples) iface.launch(debug=True)