# Copyright 2023 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from ..utils.torch_utils import randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class RePaintSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.FloatTensor pred_original_sample: torch.FloatTensor # Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar def betas_for_alpha_bar( num_diffusion_timesteps, max_beta=0.999, alpha_transform_type="cosine", ): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. Choose from `cosine` or `exp` Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ if alpha_transform_type == "cosine": def alpha_bar_fn(t): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(t): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class RePaintScheduler(SchedulerMixin, ConfigMixin): """ `RePaintScheduler` is a scheduler for DDPM inpainting inside a given mask. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving. Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, `squaredcos_cap_v2`, or `sigmoid`. eta (`float`): The weight of noise for added noise in diffusion step. If its value is between 0.0 and 1.0 it corresponds to the DDIM scheduler, and if its value is between -0.0 and 1.0 it corresponds to the DDPM scheduler. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. clip_sample (`bool`, defaults to `True`): Clip the predicted sample between -1 and 1 for numerical stability. """ order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", eta: float = 0.0, trained_betas: Optional[np.ndarray] = None, clip_sample: bool = True, ): if trained_betas is not None: self.betas = torch.from_numpy(trained_betas) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = ( torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) elif beta_schedule == "sigmoid": # GeoDiff sigmoid schedule betas = torch.linspace(-6, 6, num_train_timesteps) self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.one = torch.tensor(1.0) self.final_alpha_cumprod = torch.tensor(1.0) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.num_inference_steps = None self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) self.eta = eta def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.FloatTensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.FloatTensor`: A scaled input sample. """ return sample def set_timesteps( self, num_inference_steps: int, jump_length: int = 10, jump_n_sample: int = 10, device: Union[str, torch.device] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. jump_length (`int`, defaults to 10): The number of steps taken forward in time before going backward in time for a single jump (“j” in RePaint paper). Take a look at Figure 9 and 10 in the paper. jump_n_sample (`int`, defaults to 10): The number of times to make a forward time jump for a given chosen time sample. Take a look at Figure 9 and 10 in the paper. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) self.num_inference_steps = num_inference_steps timesteps = [] jumps = {} for j in range(0, num_inference_steps - jump_length, jump_length): jumps[j] = jump_n_sample - 1 t = num_inference_steps while t >= 1: t = t - 1 timesteps.append(t) if jumps.get(t, 0) > 0: jumps[t] = jumps[t] - 1 for _ in range(jump_length): t = t + 1 timesteps.append(t) timesteps = np.array(timesteps) * (self.config.num_train_timesteps // self.num_inference_steps) self.timesteps = torch.from_numpy(timesteps).to(device) def _get_variance(self, t): prev_timestep = t - self.config.num_train_timesteps // self.num_inference_steps alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from # https://arxiv.org/pdf/2006.11239.pdf) and sample from it to get # previous sample x_{t-1} ~ N(pred_prev_sample, variance) == add # variance to pred_sample # Is equivalent to formula (16) in https://arxiv.org/pdf/2010.02502.pdf # without eta. # variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * self.betas[t] variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance def step( self, model_output: torch.FloatTensor, timestep: int, sample: torch.FloatTensor, original_image: torch.FloatTensor, mask: torch.FloatTensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[RePaintSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.FloatTensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): A current instance of a sample created by the diffusion process. original_image (`torch.FloatTensor`): The original image to inpaint on. mask (`torch.FloatTensor`): The mask where a value of 0.0 indicates which part of the original image to inpaint. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_repaint.RePaintSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ t = timestep prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps # 1. compute alphas, betas alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf pred_original_sample = (sample - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5 # 3. Clip "predicted x_0" if self.config.clip_sample: pred_original_sample = torch.clamp(pred_original_sample, -1, 1) # We choose to follow RePaint Algorithm 1 to get x_{t-1}, however we # substitute formula (7) in the algorithm coming from DDPM paper # (formula (4) Algorithm 2 - Sampling) with formula (12) from DDIM paper. # DDIM schedule gives the same results as DDPM with eta = 1.0 # Noise is being reused in 7. and 8., but no impact on quality has # been observed. # 5. Add noise device = model_output.device noise = randn_tensor(model_output.shape, generator=generator, device=device, dtype=model_output.dtype) std_dev_t = self.eta * self._get_variance(timestep) ** 0.5 variance = 0 if t > 0 and self.eta > 0: variance = std_dev_t * noise # 6. compute "direction pointing to x_t" of formula (12) # from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_{t-1} of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_unknown_part = alpha_prod_t_prev**0.5 * pred_original_sample + pred_sample_direction + variance # 8. Algorithm 1 Line 5 https://arxiv.org/pdf/2201.09865.pdf prev_known_part = (alpha_prod_t_prev**0.5) * original_image + ((1 - alpha_prod_t_prev) ** 0.5) * noise # 9. Algorithm 1 Line 8 https://arxiv.org/pdf/2201.09865.pdf pred_prev_sample = mask * prev_known_part + (1.0 - mask) * prev_unknown_part if not return_dict: return ( pred_prev_sample, pred_original_sample, ) return RePaintSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) def undo_step(self, sample, timestep, generator=None): n = self.config.num_train_timesteps // self.num_inference_steps for i in range(n): beta = self.betas[timestep + i] if sample.device.type == "mps": # randn does not work reproducibly on mps noise = randn_tensor(sample.shape, dtype=sample.dtype, generator=generator) noise = noise.to(sample.device) else: noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype) # 10. Algorithm 1 Line 10 https://arxiv.org/pdf/2201.09865.pdf sample = (1 - beta) ** 0.5 * sample + beta**0.5 * noise return sample def add_noise( self, original_samples: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor, ) -> torch.FloatTensor: raise NotImplementedError("Use `DDPMScheduler.add_noise()` to train for sampling with RePaint.") def __len__(self): return self.config.num_train_timesteps