import re import sys import typing as tp import unicodedata from sacremoses import MosesPunctNormalizer from sentence_splitter import SentenceSplitter from transformers import AutoModelForSeq2SeqLM, NllbTokenizer import torch MODEL_URL = "slone/nllb-210-v1" LANGUAGES = { "Русский | Russian": "rus_Cyrl", "English | Английский": "eng_Latn", "Azərbaycan | Azerbaijani | Азербайджанский": "azj_Latn", "Башҡорт | Bashkir | Башкирский": "bak_Cyrl", "Буряад | Buryat | Бурятский": "bxr_Cyrl", "Чӑваш | Chuvash | Чувашский": "chv_Cyrl", "Хакас | Khakas | Хакасский": "kjh_Cyrl", "Къарачай-малкъар | Karachay-Balkar | Карачаево-балкарский": "krc_Cyrl", "Марий | Meadow Mari | Марийский": "mhr_Cyrl", "Эрзянь | Erzya | Эрзянский": "myv_Cyrl", "Татар | Tatar | Татарский": "tat_Cyrl", "Тыва | Тувинский | Tuvan ": "tyv_Cyrl", } L1, L2 = "rus_Cyrl", "eng_Latn" def get_non_printing_char_replacer(replace_by: str = " ") -> tp.Callable[[str], str]: non_printable_map = {ord(c): replace_by for c in (chr(i) for i in range(sys.maxunicode + 1)) if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}} return lambda line: line.translate(non_printable_map) class TextPreprocessor: def __init__(self, lang="en"): self.mpn = MosesPunctNormalizer(lang=lang) self.mpn.substitutions = [(re.compile(r), sub) for r, sub in self.mpn.substitutions] self.replace_nonprint = get_non_printing_char_replacer(" ") def __call__(self, text: str) -> str: return unicodedata.normalize("NFKC", self.replace_nonprint(self.mpn.normalize(text))) def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False): if fix_double_space: text = re.sub(" +", " ", text) sentences = splitter.split(text) fillers = [] i = 0 for sentence in sentences: start_idx = text.find(sentence, i) if ignore_errors and start_idx == -1: start_idx = i + 1 assert start_idx != -1, f"sent not found after {i}: `{sentence}`" fillers.append(text[i:start_idx]) i = start_idx + len(sentence) fillers.append(text[i:]) return sentences, fillers class Translator: def __init__(self): self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL, low_cpu_mem_usage=True) self.model.cuda() if torch.cuda.is_available() else None self.tokenizer = NllbTokenizer.from_pretrained(MODEL_URL) self.splitter = SentenceSplitter("ru") self.preprocessor = TextPreprocessor() self.languages = LANGUAGES def translate(self, text, src_lang=L1, tgt_lang=L2, max_length="auto", num_beams=4, by_sentence=True, preprocess=True, **kwargs): sents, fillers = (sentenize_with_fillers(text, self.splitter, ignore_errors=True) if by_sentence else ([text], ["", ""])) results = [] if preprocess: for sent in sents: results.append(self.preprocessor(sent)) else: results = sents for sent, sep in zip(results, fillers): results.append(sep) results.append(self.translate_single(sent, src_lang, tgt_lang, max_length, num_beams, **kwargs)) results.append(fillers[-1]) return "".join(results) def translate_single(self, text, src_lang=L1, tgt_lang=L2, max_length="auto", num_beams=4, n_out=None, **kwargs): self.tokenizer.src_lang = src_lang encoded = self.tokenizer(text, return_tensors="pt", truncation=True, max_length=512) max_length = int(32 + 2.0 * encoded.input_ids.shape[1]) if max_length == "auto" else max_length generated_tokens = self.model.generate(**encoded.to(self.model.device), forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang], max_length=max_length, num_beams=num_beams, num_return_sequences=n_out or 1, **kwargs) out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) return out[0] if isinstance(text, str) and n_out is None else out