# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import collections.abc import copy import inspect import json import multiprocessing import os import shutil import tempfile import traceback from pathlib import Path from check_config_docstrings import get_checkpoint_from_config_class from datasets import load_dataset from get_test_info import get_model_to_tester_mapping, get_tester_classes_for_model from huggingface_hub import Repository, create_repo, hf_api, upload_folder from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, IMAGE_PROCESSOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoTokenizer, LayoutLMv3TokenizerFast, PreTrainedTokenizer, PreTrainedTokenizerFast, logging, ) from transformers.feature_extraction_utils import FeatureExtractionMixin from transformers.file_utils import is_tf_available, is_torch_available from transformers.image_processing_utils import BaseImageProcessor from transformers.models.auto.configuration_auto import AutoConfig, model_type_to_module_name from transformers.models.fsmt import configuration_fsmt from transformers.processing_utils import ProcessorMixin, transformers_module from transformers.tokenization_utils_base import PreTrainedTokenizerBase # make sure tokenizer plays nice with multiprocessing os.environ["TOKENIZERS_PARALLELISM"] = "false" logging.set_verbosity_error() logging.disable_progress_bar() logger = logging.get_logger(__name__) os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" if not is_torch_available(): raise ValueError("Please install PyTorch.") if not is_tf_available(): raise ValueError("Please install TensorFlow.") FRAMEWORKS = ["pytorch", "tensorflow"] INVALID_ARCH = [] TARGET_VOCAB_SIZE = 1024 data = {"training_ds": None, "testing_ds": None} COMPOSITE_MODELS = { "EncoderDecoderModel": "EncoderDecoderModel-bert-bert", "SpeechEncoderDecoderModel": "SpeechEncoderDecoderModel-wav2vec2-bert", "VisionEncoderDecoderModel": "VisionEncoderDecoderModel-vit-gpt2", "VisionTextDualEncoderModel": "VisionTextDualEncoderModel-vit-bert", } # This list contains the model architectures for which a tiny version could not be created. # Avoid to add new architectures here - unless we have verified carefully that it's (almost) impossible to create them. # One such case is: no model tester class is implemented for a model type (like `MT5`) because its architecture is # identical to another one (`MT5` is based on `T5`), but trained on different datasets or with different techniques. UNCONVERTIBLE_MODEL_ARCHITECTURES = { "BertGenerationEncoder", "BertGenerationDecoder", "CamembertForSequenceClassification", "CamembertForMultipleChoice", "CamembertForMaskedLM", "CamembertForCausalLM", "CamembertForTokenClassification", "CamembertForQuestionAnswering", "CamembertModel", "TFCamembertForMultipleChoice", "TFCamembertForTokenClassification", "TFCamembertForQuestionAnswering", "TFCamembertForSequenceClassification", "TFCamembertForMaskedLM", "TFCamembertModel", "TFCamembertForCausalLM", "DecisionTransformerModel", "GraphormerModel", "InformerModel", "JukeboxModel", "MarianForCausalLM", "MaskFormerSwinModel", "MaskFormerSwinBackbone", "MT5Model", "MT5ForConditionalGeneration", "UMT5ForConditionalGeneration", "TFMT5ForConditionalGeneration", "TFMT5Model", "QDQBertForSequenceClassification", "QDQBertForMaskedLM", "QDQBertModel", "QDQBertForTokenClassification", "QDQBertLMHeadModel", "QDQBertForMultipleChoice", "QDQBertForQuestionAnswering", "QDQBertForNextSentencePrediction", "ReformerModelWithLMHead", "RetriBertModel", "Speech2Text2ForCausalLM", "TimeSeriesTransformerModel", "TrajectoryTransformerModel", "TrOCRForCausalLM", "XLMProphetNetForConditionalGeneration", "XLMProphetNetForCausalLM", "XLMProphetNetModel", "XLMRobertaModel", "XLMRobertaForTokenClassification", "XLMRobertaForMultipleChoice", "XLMRobertaForMaskedLM", "XLMRobertaForCausalLM", "XLMRobertaForSequenceClassification", "XLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForCausalLM", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaModel", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForTokenClassification", } def get_processor_types_from_config_class(config_class, allowed_mappings=None): """Return a tuple of processors for `config_class`. We use `tuple` here to include (potentially) both slow & fast tokenizers. """ # To make a uniform return type def _to_tuple(x): if not isinstance(x, collections.abc.Sequence): x = (x,) else: x = tuple(x) return x if allowed_mappings is None: allowed_mappings = ["processor", "tokenizer", "image_processor", "feature_extractor"] processor_types = () # Check first if a model has `ProcessorMixin`. Otherwise, check if it has tokenizers, and/or an image processor or # a feature extractor if config_class in PROCESSOR_MAPPING and "processor" in allowed_mappings: processor_types = _to_tuple(PROCESSOR_MAPPING[config_class]) else: if config_class in TOKENIZER_MAPPING and "tokenizer" in allowed_mappings: processor_types = TOKENIZER_MAPPING[config_class] if config_class in IMAGE_PROCESSOR_MAPPING and "image_processor" in allowed_mappings: processor_types += _to_tuple(IMAGE_PROCESSOR_MAPPING[config_class]) elif config_class in FEATURE_EXTRACTOR_MAPPING and "feature_extractor" in allowed_mappings: processor_types += _to_tuple(FEATURE_EXTRACTOR_MAPPING[config_class]) # Remark: some configurations have no processor at all. For example, generic composite models like # `EncoderDecoderModel` is used for any (compatible) text models. Also, `DecisionTransformer` doesn't # require any processor. # We might get `None` for some tokenizers - remove them here. processor_types = tuple(p for p in processor_types if p is not None) return processor_types def get_architectures_from_config_class(config_class, arch_mappings, models_to_skip=None): """Return a tuple of all possible architectures attributed to a configuration class `config_class`. For example, BertConfig -> [BertModel, BertForMaskedLM, ..., BertForQuestionAnswering]. """ # A model architecture could appear in several mappings. For example, `BartForConditionalGeneration` is in # - MODEL_FOR_PRETRAINING_MAPPING_NAMES # - MODEL_WITH_LM_HEAD_MAPPING_NAMES # - MODEL_FOR_MASKED_LM_MAPPING_NAMES # - MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES # We avoid the duplication. architectures = set() if models_to_skip is None: models_to_skip = [] models_to_skip = UNCONVERTIBLE_MODEL_ARCHITECTURES.union(models_to_skip) for mapping in arch_mappings: if config_class in mapping: models = mapping[config_class] models = tuple(models) if isinstance(models, collections.abc.Sequence) else (models,) for model in models: if model.__name__ not in models_to_skip: architectures.add(model) architectures = tuple(architectures) return architectures def get_config_class_from_processor_class(processor_class): """Get the config class from a processor class. Some config/model classes use tokenizers/feature_extractors from other models. For example, `GPT-J` uses `GPT2Tokenizer`. If no checkpoint is found for a config class, or a checkpoint is found without necessary file(s) to create the processor for `processor_class`, we get the config class that corresponds to `processor_class` and use it to find a checkpoint in order to create the processor. """ processor_prefix = processor_class.__name__ for postfix in ["TokenizerFast", "Tokenizer", "ImageProcessor", "FeatureExtractor", "Processor"]: processor_prefix = processor_prefix.replace(postfix, "") # `Wav2Vec2CTCTokenizer` -> `Wav2Vec2Config` if processor_prefix == "Wav2Vec2CTC": processor_prefix = "Wav2Vec2" # Find the new configuration class new_config_name = f"{processor_prefix}Config" new_config_class = getattr(transformers_module, new_config_name) return new_config_class def build_processor(config_class, processor_class, allow_no_checkpoint=False): """Create a processor for `processor_class`. If a processor is not able to be built with the original arguments, this method tries to change the arguments and call itself recursively, by inferring a new `config_class` or a new `processor_class` from another one, in order to find a checkpoint containing the necessary files to build a processor. The processor is not saved here. Instead, it will be saved in `convert_processors` after further changes in `convert_processors`. For each model architecture`, a copy will be created and saved along the built model. """ # Currently, this solely uses the docstring in the source file of `config_class` to find a checkpoint. checkpoint = get_checkpoint_from_config_class(config_class) if checkpoint is None: # try to get the checkpoint from the config class for `processor_class`. # This helps cases like `XCLIPConfig` and `VideoMAEFeatureExtractor` to find a checkpoint from `VideoMAEConfig`. config_class_from_processor_class = get_config_class_from_processor_class(processor_class) checkpoint = get_checkpoint_from_config_class(config_class_from_processor_class) processor = None try: processor = processor_class.from_pretrained(checkpoint) except Exception as e: logger.error(f"{e.__class__.__name__}: {e}") # Try to get a new processor class from checkpoint. This is helpful for a checkpoint without necessary file to load # processor while `processor_class` is an Auto class. For example, `sew` has `Wav2Vec2Processor` in # `PROCESSOR_MAPPING_NAMES`, its `tokenizer_class` is `AutoTokenizer`, and the checkpoint # `https://huggingface.co/asapp/sew-tiny-100k` has no tokenizer file, but we can get # `tokenizer_class: Wav2Vec2CTCTokenizer` from the config file. (The new processor class won't be able to load from # `checkpoint`, but it helps this recursive method to find a way to build a processor). if ( processor is None and checkpoint is not None and issubclass(processor_class, (PreTrainedTokenizerBase, AutoTokenizer)) ): try: config = AutoConfig.from_pretrained(checkpoint) except Exception as e: logger.error(f"{e.__class__.__name__}: {e}") config = None if config is not None: if not isinstance(config, config_class): raise ValueError( f"`config` (which is of type {config.__class__.__name__}) should be an instance of `config_class`" f" ({config_class.__name__})!" ) tokenizer_class = config.tokenizer_class new_processor_class = None if tokenizer_class is not None: new_processor_class = getattr(transformers_module, tokenizer_class) if new_processor_class != processor_class: processor = build_processor(config_class, new_processor_class) # If `tokenizer_class` is not specified in `config`, let's use `config` to get the process class via auto # mappings, but only allow the tokenizer mapping being used. This is to make `Wav2Vec2Conformer` build if processor is None: new_processor_classes = get_processor_types_from_config_class( config.__class__, allowed_mappings=["tokenizer"] ) # Used to avoid infinite recursion between a pair of fast/slow tokenizer types names = [ x.__name__.replace("Fast", "") for x in [processor_class, new_processor_class] if x is not None ] new_processor_classes = [ x for x in new_processor_classes if x is not None and x.__name__.replace("Fast", "") not in names ] if len(new_processor_classes) > 0: new_processor_class = new_processor_classes[0] # Let's use fast tokenizer if there is any for x in new_processor_classes: if x.__name__.endswith("Fast"): new_processor_class = x break processor = build_processor(config_class, new_processor_class) if processor is None: # Try to build each component (tokenizer & feature extractor) of a `ProcessorMixin`. if issubclass(processor_class, ProcessorMixin): attrs = {} for attr_name in processor_class.attributes: attrs[attr_name] = [] # This could be a tuple (for tokenizers). For example, `CLIPProcessor` has # - feature_extractor_class = "CLIPFeatureExtractor" # - tokenizer_class = ("CLIPTokenizer", "CLIPTokenizerFast") attr_class_names = getattr(processor_class, f"{attr_name}_class") if not isinstance(attr_class_names, tuple): attr_class_names = (attr_class_names,) for name in attr_class_names: attr_class = getattr(transformers_module, name) attr = build_processor(config_class, attr_class) if attr is not None: attrs[attr_name].append(attr) # try to build a `ProcessorMixin`, so we can return a single value if all(len(v) > 0 for v in attrs.values()): try: processor = processor_class(**{k: v[0] for k, v in attrs.items()}) except Exception as e: logger.error(f"{e.__class__.__name__}: {e}") else: # `checkpoint` might lack some file(s) to load a processor. For example, `facebook/hubert-base-ls960` # has no tokenizer file to load `Wav2Vec2CTCTokenizer`. In this case, we try to build a processor # with the configuration class (for example, `Wav2Vec2Config`) corresponding to `processor_class`. config_class_from_processor_class = get_config_class_from_processor_class(processor_class) if config_class_from_processor_class != config_class: processor = build_processor(config_class_from_processor_class, processor_class) # Try to create an image processor or a feature extractor without any checkpoint if ( processor is None and allow_no_checkpoint and (issubclass(processor_class, BaseImageProcessor) or issubclass(processor_class, FeatureExtractionMixin)) ): try: processor = processor_class() except Exception as e: logger.error(f"{e.__class__.__name__}: {e}") # validation if processor is not None: if not (isinstance(processor, processor_class) or processor_class.__name__.startswith("Auto")): raise ValueError( f"`processor` (which is of type {processor.__class__.__name__}) should be an instance of" f" {processor_class.__name__} or an Auto class!" ) return processor def get_tiny_config(config_class, model_class=None, **model_tester_kwargs): """Retrieve a tiny configuration from `config_class` using each model's `ModelTester`. Args: config_class: Subclass of `PreTrainedConfig`. Returns: An instance of `config_class` with tiny hyperparameters """ model_type = config_class.model_type # For model type like `data2vec-vision` and `donut-swin`, we can't get the config/model file name directly via # `model_type` as it would be sth. like `configuration_data2vec_vision.py`. # A simple way is to use `inspect.getsourcefile(config_class)`. config_source_file = inspect.getsourcefile(config_class) # The modeling file name without prefix (`modeling_`) and postfix (`.py`) modeling_name = config_source_file.split(os.path.sep)[-1].replace("configuration_", "").replace(".py", "") try: print("Importing", model_type_to_module_name(model_type)) module_name = model_type_to_module_name(model_type) if not modeling_name.startswith(module_name): raise ValueError(f"{modeling_name} doesn't start with {module_name}!") test_file = os.path.join("tests", "models", module_name, f"test_modeling_{modeling_name}.py") models_to_model_testers = get_model_to_tester_mapping(test_file) # Find the model tester class model_tester_class = None tester_classes = [] if model_class is not None: tester_classes = get_tester_classes_for_model(test_file, model_class) else: for _tester_classes in models_to_model_testers.values(): tester_classes.extend(_tester_classes) if len(tester_classes) > 0: # sort with the length of the class names first, then the alphabetical order # This is to avoid `T5EncoderOnlyModelTest` is used instead of `T5ModelTest`, which has # `is_encoder_decoder=False` and causes some pipeline tests failing (also failures in `Optimum` CI). # TODO: More fine grained control of the desired tester class. model_tester_class = sorted(tester_classes, key=lambda x: (len(x.__name__), x.__name__))[0] except ModuleNotFoundError: error = f"Tiny config not created for {model_type} - cannot find the testing module from the model name." raise ValueError(error) if model_tester_class is None: error = f"Tiny config not created for {model_type} - no model tester is found in the testing module." raise ValueError(error) # CLIP-like models have `text_model_tester` and `vision_model_tester`, and we need to pass `vocab_size` to # `text_model_tester` via `text_kwargs`. The same trick is also necessary for `Flava`. if "vocab_size" in model_tester_kwargs: if "text_kwargs" in inspect.signature(model_tester_class.__init__).parameters.keys(): vocab_size = model_tester_kwargs.pop("vocab_size") model_tester_kwargs["text_kwargs"] = {"vocab_size": vocab_size} # `parent` is an instance of `unittest.TestCase`, but we don't need it here. model_tester = model_tester_class(parent=None, **model_tester_kwargs) if hasattr(model_tester, "get_pipeline_config"): config = model_tester.get_pipeline_config() elif hasattr(model_tester, "prepare_config_and_inputs"): # `PoolFormer` has no `get_config` defined. Furthermore, it's better to use `prepare_config_and_inputs` even if # `get_config` is defined, since there might be some extra changes in `prepare_config_and_inputs`. config = model_tester.prepare_config_and_inputs()[0] elif hasattr(model_tester, "get_config"): config = model_tester.get_config() else: error = ( f"Tiny config not created for {model_type} - the model tester {model_tester_class.__name__} lacks" " necessary method to create config." ) raise ValueError(error) # make sure this is long enough (some model tester has `20` for this attr.) to pass `text-generation` # pipeline tests. max_positions = [] for key in ["max_position_embeddings", "max_source_positions", "max_target_positions"]: if getattr(config, key, 0) > 0: max_positions.append(getattr(config, key)) if getattr(config, "text_config", None) is not None: if getattr(config.text_config, key, None) is not None: max_positions.append(getattr(config.text_config, key)) if len(max_positions) > 0: max_position = max(200, min(max_positions)) for key in ["max_position_embeddings", "max_source_positions", "max_target_positions"]: if getattr(config, key, 0) > 0: setattr(config, key, max_position) if getattr(config, "text_config", None) is not None: if getattr(config.text_config, key, None) is not None: setattr(config.text_config, key, max_position) return config def convert_tokenizer(tokenizer_fast: PreTrainedTokenizerFast): new_tokenizer = tokenizer_fast.train_new_from_iterator( data["training_ds"]["text"], TARGET_VOCAB_SIZE, show_progress=False ) # Make sure it at least runs if not isinstance(new_tokenizer, LayoutLMv3TokenizerFast): new_tokenizer(data["testing_ds"]["text"]) return new_tokenizer def convert_feature_extractor(feature_extractor, tiny_config): to_convert = False kwargs = {} if hasattr(tiny_config, "image_size"): kwargs["size"] = tiny_config.image_size kwargs["crop_size"] = tiny_config.image_size to_convert = True elif ( hasattr(tiny_config, "vision_config") and tiny_config.vision_config is not None and hasattr(tiny_config.vision_config, "image_size") ): kwargs["size"] = tiny_config.vision_config.image_size kwargs["crop_size"] = tiny_config.vision_config.image_size to_convert = True # Speech2TextModel specific. if hasattr(tiny_config, "input_feat_per_channel"): kwargs["feature_size"] = tiny_config.input_feat_per_channel kwargs["num_mel_bins"] = tiny_config.input_feat_per_channel to_convert = True if to_convert: feature_extractor = feature_extractor.__class__(**kwargs) return feature_extractor def convert_processors(processors, tiny_config, output_folder, result): """Change a processor to work with smaller inputs. For tokenizers, we try to reduce their vocabulary size. For feature extractor, we use smaller image size or change other attributes using the values from `tiny_config`. See `convert_feature_extractor`. This method should not fail: we catch the errors and put them in `result["warnings"]` with descriptive messages. """ def _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=False): """Set tokenizer(s) to `None` if the fast/slow tokenizers have different values for `vocab_size` or `length`. If `keep_fast_tokenizer=True`, the fast tokenizer will be kept. """ # sanity check 1: fast and slow tokenizers should be compatible (vocab_size) if fast_tokenizer is not None and slow_tokenizer is not None: if fast_tokenizer.vocab_size != slow_tokenizer.vocab_size: warning_messagae = ( "The fast/slow tokenizers " f"({fast_tokenizer.__class__.__name__}/{slow_tokenizer.__class__.__name__}) have different " "vocabulary size: " f"fast_tokenizer.vocab_size = {fast_tokenizer.vocab_size} and " f"slow_tokenizer.vocab_size = {slow_tokenizer.vocab_size}." ) result["warnings"].append(warning_messagae) if not keep_fast_tokenizer: fast_tokenizer = None slow_tokenizer = None # sanity check 2: fast and slow tokenizers should be compatible (length) if fast_tokenizer is not None and slow_tokenizer is not None: if len(fast_tokenizer) != len(slow_tokenizer): warning_messagae = ( f"The fast/slow tokenizers () have different length: " f"len(fast_tokenizer) = {len(fast_tokenizer)} and " f"len(slow_tokenizer) = {len(slow_tokenizer)}." ) result["warnings"].append(warning_messagae) if not keep_fast_tokenizer: fast_tokenizer = None slow_tokenizer = None return fast_tokenizer, slow_tokenizer tokenizers = [] feature_extractors = [] for processor in processors: if isinstance(processor, PreTrainedTokenizerBase): if processor.__class__.__name__ not in {x.__class__.__name__ for x in tokenizers}: tokenizers.append(processor) elif isinstance(processor, BaseImageProcessor): if processor.__class__.__name__ not in {x.__class__.__name__ for x in feature_extractors}: feature_extractors.append(processor) elif isinstance(processor, FeatureExtractionMixin): if processor.__class__.__name__ not in {x.__class__.__name__ for x in feature_extractors}: feature_extractors.append(processor) elif isinstance(processor, ProcessorMixin): if hasattr(processor, "tokenizer"): if processor.tokenizer.__class__.__name__ not in {x.__class__.__name__ for x in tokenizers}: tokenizers.append(processor.tokenizer) # Currently, we only have these 2 possibilities if hasattr(processor, "image_processor"): if processor.image_processor.__class__.__name__ not in { x.__class__.__name__ for x in feature_extractors }: feature_extractors.append(processor.image_processor) elif hasattr(processor, "feature_extractor"): if processor.feature_extractor.__class__.__name__ not in { x.__class__.__name__ for x in feature_extractors }: feature_extractors.append(processor.feature_extractor) # check the built processors have the unique type num_types = len({x.__class__.__name__ for x in feature_extractors}) if num_types >= 2: raise ValueError(f"`feature_extractors` should contain at most 1 type, but it contains {num_types} types!") num_types = len({x.__class__.__name__.replace("Fast", "") for x in tokenizers}) if num_types >= 2: raise ValueError(f"`tokenizers` should contain at most 1 tokenizer type, but it contains {num_types} types!") fast_tokenizer = None slow_tokenizer = None for tokenizer in tokenizers: if isinstance(tokenizer, PreTrainedTokenizerFast): fast_tokenizer = tokenizer else: slow_tokenizer = tokenizer # If the (original) fast/slow tokenizers don't correspond, keep only the fast tokenizer. # This doesn't necessarily imply the fast/slow tokenizers in a single Hub repo. has issues. # It's more of an issue in `build_processor` which tries to get a checkpoint with as much effort as possible. # For `YosoModel` (which uses `AlbertTokenizer(Fast)`), its real (Hub) checkpoint doesn't contain valid files to # load the slower tokenizer (`AlbertTokenizer`), and it ends up finding the (canonical) checkpoint of `AlbertModel`, # which has different vocabulary. # TODO: Try to improve `build_processor`'s definition and/or usage to avoid the above situation in the first place. fast_tokenizer, slow_tokenizer = _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=True) original_fast_tokenizer, original_slow_tokenizer = fast_tokenizer, slow_tokenizer if fast_tokenizer: try: # Wav2Vec2ForCTC , ByT5Tokenizer etc. all are already small enough and have no fast version that can # be retrained if fast_tokenizer.vocab_size > TARGET_VOCAB_SIZE: fast_tokenizer = convert_tokenizer(fast_tokenizer) except Exception: result["warnings"].append( ( f"Failed to convert the fast tokenizer for {fast_tokenizer.__class__.__name__}.", traceback.format_exc(), ) ) # If `fast_tokenizer` exists, `slow_tokenizer` should correspond to it. if fast_tokenizer: # Make sure the fast tokenizer can be saved try: # We don't save it to `output_folder` at this moment - only at the end of this function. with tempfile.TemporaryDirectory() as tmpdir: fast_tokenizer.save_pretrained(tmpdir) try: slow_tokenizer = AutoTokenizer.from_pretrained(tmpdir, use_fast=False) except Exception: result["warnings"].append( ( f"Failed to load the slow tokenizer saved from {fast_tokenizer.__class__.__name__}.", traceback.format_exc(), ) ) # Let's just keep the fast version slow_tokenizer = None except Exception: result["warnings"].append( ( f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}.", traceback.format_exc(), ) ) fast_tokenizer = None # If the (possibly converted) fast/slow tokenizers don't correspond, set them to `None`, and use the original # tokenizers. fast_tokenizer, slow_tokenizer = _sanity_check(fast_tokenizer, slow_tokenizer, keep_fast_tokenizer=False) # If there is any conversion failed, we keep the original tokenizers. if (original_fast_tokenizer is not None and fast_tokenizer is None) or ( original_slow_tokenizer is not None and slow_tokenizer is None ): warning_messagae = ( "There are some issues when converting the fast/slow tokenizers. The original tokenizers from the Hub " " will be used instead." ) result["warnings"].append(warning_messagae) # Let's use the original version at the end (`original_fast_tokenizer` and `original_slow_tokenizer`) fast_tokenizer = original_fast_tokenizer slow_tokenizer = original_slow_tokenizer # Make sure the fast tokenizer can be saved if fast_tokenizer: # We don't save it to `output_folder` at this moment - only at the end of this function. with tempfile.TemporaryDirectory() as tmpdir: try: fast_tokenizer.save_pretrained(tmpdir) except Exception: result["warnings"].append( ( f"Failed to save the fast tokenizer for {fast_tokenizer.__class__.__name__}.", traceback.format_exc(), ) ) fast_tokenizer = None # Make sure the slow tokenizer can be saved if slow_tokenizer: # We don't save it to `output_folder` at this moment - only at the end of this function. with tempfile.TemporaryDirectory() as tmpdir: try: slow_tokenizer.save_pretrained(tmpdir) except Exception: result["warnings"].append( ( f"Failed to save the slow tokenizer for {slow_tokenizer.__class__.__name__}.", traceback.format_exc(), ) ) slow_tokenizer = None # update feature extractors using the tiny config try: feature_extractors = [convert_feature_extractor(p, tiny_config) for p in feature_extractors] except Exception: result["warnings"].append( ( "Failed to convert feature extractors.", traceback.format_exc(), ) ) feature_extractors = [] if hasattr(tiny_config, "max_position_embeddings") and tiny_config.max_position_embeddings > 0: if fast_tokenizer is not None: if fast_tokenizer.__class__.__name__ in [ "RobertaTokenizerFast", "XLMRobertaTokenizerFast", "LongformerTokenizerFast", "MPNetTokenizerFast", ]: fast_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2 else: fast_tokenizer.model_max_length = tiny_config.max_position_embeddings if slow_tokenizer is not None: if slow_tokenizer.__class__.__name__ in [ "RobertaTokenizer", "XLMRobertaTokenizer", "LongformerTokenizer", "MPNetTokenizer", ]: slow_tokenizer.model_max_length = tiny_config.max_position_embeddings - 2 else: slow_tokenizer.model_max_length = tiny_config.max_position_embeddings processors = [fast_tokenizer, slow_tokenizer] + feature_extractors processors = [p for p in processors if p is not None] for p in processors: p.save_pretrained(output_folder) return processors def get_checkpoint_dir(output_dir, model_arch): """Get framework-agnostic architecture name. Used to save all PT/TF/Flax models into the same directory.""" arch_name = model_arch.__name__ if arch_name.startswith("TF"): arch_name = arch_name[2:] elif arch_name.startswith("Flax"): arch_name = arch_name[4:] return os.path.join(output_dir, arch_name) def build_model(model_arch, tiny_config, output_dir): """Create and save a model for `model_arch`. Also copy the set of processors to each model (under the same model type) output folder. """ checkpoint_dir = get_checkpoint_dir(output_dir, model_arch) processor_output_dir = os.path.join(output_dir, "processors") # copy the (same set of) processors (for a model type) to the model arch. specific folder if os.path.isdir(processor_output_dir): shutil.copytree(processor_output_dir, checkpoint_dir, dirs_exist_ok=True) tiny_config = copy.deepcopy(tiny_config) if any(model_arch.__name__.endswith(x) for x in ["ForCausalLM", "LMHeadModel"]): tiny_config.is_encoder_decoder = False tiny_config.is_decoder = True model = model_arch(config=tiny_config) model.save_pretrained(checkpoint_dir) model.from_pretrained(checkpoint_dir) return model def fill_result_with_error(result, error, trace, models_to_create): """Fill `result` with errors for all target model arch if we can't build processor""" error = (error, trace) result["error"] = error for framework in FRAMEWORKS: if framework in models_to_create: result[framework] = {} for model_arch in models_to_create[framework]: result[framework][model_arch.__name__] = {"model": None, "checkpoint": None, "error": error} result["processor"] = {p.__class__.__name__: p.__class__.__name__ for p in result["processor"].values()} def upload_model(model_dir, organization, token): """Upload the tiny models""" arch_name = model_dir.split(os.path.sep)[-1] repo_name = f"tiny-random-{arch_name}" repo_id = f"{organization}/{repo_name}" repo_exist = False error = None try: create_repo(repo_id=repo_id, exist_ok=False, repo_type="model", token=token) except Exception as e: error = e if "You already created" in str(e): error = None logger.warning("Remote repository exists and will be cloned.") repo_exist = True try: create_repo(repo_id=repo_id, exist_ok=True, repo_type="model", token=token) except Exception as e: error = e if error is not None: raise error with tempfile.TemporaryDirectory() as tmpdir: repo = Repository(local_dir=tmpdir, clone_from=repo_id, token=token) repo.git_pull() shutil.copytree(model_dir, tmpdir, dirs_exist_ok=True) if repo_exist: # Open a PR on the existing Hub repo. hub_pr_url = upload_folder( folder_path=model_dir, repo_id=repo_id, repo_type="model", commit_message=f"Update tiny models for {arch_name}", commit_description=f"Upload tiny models for {arch_name}", create_pr=True, token=token, ) logger.warning(f"PR open in {hub_pr_url}.") # TODO: We need this information? else: # Push to Hub repo directly repo.git_add(auto_lfs_track=True) repo.git_commit(f"Upload tiny models for {arch_name}") repo.git_push(blocking=True) # this prints a progress bar with the upload logger.warning(f"Tiny models {arch_name} pushed to {repo_id}.") def build_composite_models(config_class, output_dir): import tempfile from transformers import ( BertConfig, BertLMHeadModel, BertModel, BertTokenizer, BertTokenizerFast, EncoderDecoderModel, GPT2Config, GPT2LMHeadModel, GPT2Tokenizer, GPT2TokenizerFast, SpeechEncoderDecoderModel, TFEncoderDecoderModel, TFVisionEncoderDecoderModel, TFVisionTextDualEncoderModel, VisionEncoderDecoderModel, VisionTextDualEncoderModel, ViTConfig, ViTFeatureExtractor, ViTModel, Wav2Vec2Config, Wav2Vec2Model, Wav2Vec2Processor, ) # These will be removed at the end if they are empty result = {"error": None, "warnings": []} if config_class.model_type == "encoder-decoder": encoder_config_class = BertConfig decoder_config_class = BertConfig encoder_processor = (BertTokenizerFast, BertTokenizer) decoder_processor = (BertTokenizerFast, BertTokenizer) encoder_class = BertModel decoder_class = BertLMHeadModel model_class = EncoderDecoderModel tf_model_class = TFEncoderDecoderModel elif config_class.model_type == "vision-encoder-decoder": encoder_config_class = ViTConfig decoder_config_class = GPT2Config encoder_processor = (ViTFeatureExtractor,) decoder_processor = (GPT2TokenizerFast, GPT2Tokenizer) encoder_class = ViTModel decoder_class = GPT2LMHeadModel model_class = VisionEncoderDecoderModel tf_model_class = TFVisionEncoderDecoderModel elif config_class.model_type == "speech-encoder-decoder": encoder_config_class = Wav2Vec2Config decoder_config_class = BertConfig encoder_processor = (Wav2Vec2Processor,) decoder_processor = (BertTokenizerFast, BertTokenizer) encoder_class = Wav2Vec2Model decoder_class = BertLMHeadModel model_class = SpeechEncoderDecoderModel tf_model_class = None elif config_class.model_type == "vision-text-dual-encoder": # Not encoder-decoder, but encoder-encoder. We just keep the same name as above to make code easier encoder_config_class = ViTConfig decoder_config_class = BertConfig encoder_processor = (ViTFeatureExtractor,) decoder_processor = (BertTokenizerFast, BertTokenizer) encoder_class = ViTModel decoder_class = BertModel model_class = VisionTextDualEncoderModel tf_model_class = TFVisionTextDualEncoderModel with tempfile.TemporaryDirectory() as tmpdir: try: # build encoder models_to_create = {"processor": encoder_processor, "pytorch": (encoder_class,), "tensorflow": []} encoder_output_dir = os.path.join(tmpdir, "encoder") build(encoder_config_class, models_to_create, encoder_output_dir) # build decoder models_to_create = {"processor": decoder_processor, "pytorch": (decoder_class,), "tensorflow": []} decoder_output_dir = os.path.join(tmpdir, "decoder") build(decoder_config_class, models_to_create, decoder_output_dir) # build encoder-decoder encoder_path = os.path.join(encoder_output_dir, encoder_class.__name__) decoder_path = os.path.join(decoder_output_dir, decoder_class.__name__) if config_class.model_type != "vision-text-dual-encoder": # Specify these explicitly for encoder-decoder like models, but not for `vision-text-dual-encoder` as it # has no decoder. decoder_config = decoder_config_class.from_pretrained(decoder_path) decoder_config.is_decoder = True decoder_config.add_cross_attention = True model = model_class.from_encoder_decoder_pretrained( encoder_path, decoder_path, decoder_config=decoder_config, ) elif config_class.model_type == "vision-text-dual-encoder": model = model_class.from_vision_text_pretrained(encoder_path, decoder_path) model_path = os.path.join( output_dir, f"{model_class.__name__}-{encoder_config_class.model_type}-{decoder_config_class.model_type}", ) model.save_pretrained(model_path) if tf_model_class is not None: model = tf_model_class.from_pretrained(model_path) model.save_pretrained(model_path) # copy the processors encoder_processor_path = os.path.join(encoder_output_dir, "processors") decoder_processor_path = os.path.join(decoder_output_dir, "processors") if os.path.isdir(encoder_processor_path): shutil.copytree(encoder_processor_path, model_path, dirs_exist_ok=True) if os.path.isdir(decoder_processor_path): shutil.copytree(decoder_processor_path, model_path, dirs_exist_ok=True) # fill `result` result["processor"] = {x.__name__: x.__name__ for x in encoder_processor + decoder_processor} result["pytorch"] = {model_class.__name__: {"model": model_class.__name__, "checkpoint": model_path}} result["tensorflow"] = {} if tf_model_class is not None: result["tensorflow"] = { tf_model_class.__name__: {"model": tf_model_class.__name__, "checkpoint": model_path} } except Exception: result["error"] = ( f"Failed to build models for {config_class.__name__}.", traceback.format_exc(), ) if not result["error"]: del result["error"] if not result["warnings"]: del result["warnings"] return result def get_token_id_from_tokenizer(token_id_name, tokenizer, original_token_id): """Use `tokenizer` to get the values of `bos_token_id`, `eos_token_ids`, etc. The argument `token_id_name` should be a string ending with `_token_id`, and `original_token_id` should be an integer that will be return if `tokenizer` has no token corresponding to `token_id_name`. """ token_id = original_token_id if not token_id_name.endswith("_token_id"): raise ValueError(f"`token_id_name` is {token_id_name}, which doesn't end with `_token_id`!") token = getattr(tokenizer, token_id_name.replace("_token_id", "_token"), None) if token is not None: if isinstance(tokenizer, PreTrainedTokenizerFast): token_id = tokenizer._convert_token_to_id_with_added_voc(token) else: token_id = tokenizer._convert_token_to_id(token) return token_id def get_config_overrides(config_class, processors): # `Bark` configuration is too special. Let's just not handle this for now. if config_class.__name__ == "BarkConfig": return {} config_overrides = {} # Check if there is any tokenizer (prefer fast version if any) tokenizer = None for processor in processors: if isinstance(processor, PreTrainedTokenizerFast): tokenizer = processor break elif isinstance(processor, PreTrainedTokenizer): tokenizer = processor if tokenizer is None: return config_overrides # Get some properties of the (already converted) tokenizer (smaller vocab size, special token ids, etc.) # We use `len(tokenizer)` instead of `tokenizer.vocab_size` to avoid potential issues for tokenizers with non-empty # `added_tokens_encoder`. One example is the `DebertaV2Tokenizer` where the mask token is the extra token. vocab_size = len(tokenizer) # The original checkpoint has length `35998`, but it doesn't have ids `30400` and `30514` but instead `35998` and # `35999`. if config_class.__name__ == "GPTSanJapaneseConfig": vocab_size += 2 config_overrides["vocab_size"] = vocab_size # Used to create a new model tester with `tokenizer.vocab_size` in order to get the (updated) special token ids. model_tester_kwargs = {"vocab_size": vocab_size} # `FSMTModelTester` accepts `src_vocab_size` and `tgt_vocab_size` but not `vocab_size`. if config_class.__name__ == "FSMTConfig": del model_tester_kwargs["vocab_size"] model_tester_kwargs["src_vocab_size"] = tokenizer.src_vocab_size model_tester_kwargs["tgt_vocab_size"] = tokenizer.tgt_vocab_size _tiny_config = get_tiny_config(config_class, **model_tester_kwargs) # handle the possibility of `text_config` inside `_tiny_config` for clip-like models (`owlvit`, `groupvit`, etc.) if hasattr(_tiny_config, "text_config"): _tiny_config = _tiny_config.text_config # Collect values of some special token ids for attr in dir(_tiny_config): if attr.endswith("_token_id"): token_id = getattr(_tiny_config, attr) if token_id is not None: # Using the token id values from `tokenizer` instead of from `_tiny_config`. token_id = get_token_id_from_tokenizer(attr, tokenizer, original_token_id=token_id) config_overrides[attr] = token_id if config_class.__name__ == "FSMTConfig": config_overrides["src_vocab_size"] = tokenizer.src_vocab_size config_overrides["tgt_vocab_size"] = tokenizer.tgt_vocab_size # `FSMTConfig` has `DecoderConfig` as `decoder` attribute. config_overrides["decoder"] = configuration_fsmt.DecoderConfig( vocab_size=tokenizer.tgt_vocab_size, bos_token_id=config_overrides["eos_token_id"] ) return config_overrides def build(config_class, models_to_create, output_dir): """Create all models for a certain model type. Args: config_class (`PretrainedConfig`): A subclass of `PretrainedConfig` that is used to determine `models_to_create`. models_to_create (`dict`): A dictionary containing the processor/model classes that we want to create the instances. These models are of the same model type which is associated to `config_class`. output_dir (`str`): The directory to save all the checkpoints. Each model architecture will be saved in a subdirectory under it. Models in different frameworks with the same architecture will be saved in the same subdirectory. """ if data["training_ds"] is None or data["testing_ds"] is None: ds = load_dataset("wikitext", "wikitext-2-raw-v1") data["training_ds"] = ds["train"] data["testing_ds"] = ds["test"] if config_class.model_type in [ "encoder-decoder", "vision-encoder-decoder", "speech-encoder-decoder", "vision-text-dual-encoder", ]: return build_composite_models(config_class, output_dir) result = {k: {} for k in models_to_create} # These will be removed at the end if they are empty result["error"] = None result["warnings"] = [] # Build processors processor_classes = models_to_create["processor"] if len(processor_classes) == 0: error = f"No processor class could be found in {config_class.__name__}." fill_result_with_error(result, error, None, models_to_create) logger.error(result["error"][0]) return result for processor_class in processor_classes: try: processor = build_processor(config_class, processor_class, allow_no_checkpoint=True) if processor is not None: result["processor"][processor_class] = processor except Exception: error = f"Failed to build processor for {processor_class.__name__}." trace = traceback.format_exc() fill_result_with_error(result, error, trace, models_to_create) logger.error(result["error"][0]) return result if len(result["processor"]) == 0: error = f"No processor could be built for {config_class.__name__}." fill_result_with_error(result, error, None, models_to_create) logger.error(result["error"][0]) return result try: tiny_config = get_tiny_config(config_class) except Exception as e: error = f"Failed to get tiny config for {config_class.__name__}: {e}" trace = traceback.format_exc() fill_result_with_error(result, error, trace, models_to_create) logger.error(result["error"][0]) return result # Convert the processors (reduce vocabulary size, smaller image size, etc.) processors = list(result["processor"].values()) processor_output_folder = os.path.join(output_dir, "processors") try: processors = convert_processors(processors, tiny_config, processor_output_folder, result) except Exception: error = "Failed to convert the processors." trace = traceback.format_exc() result["warnings"].append((error, trace)) if len(processors) == 0: error = f"No processor is returned by `convert_processors` for {config_class.__name__}." fill_result_with_error(result, error, None, models_to_create) logger.error(result["error"][0]) return result try: config_overrides = get_config_overrides(config_class, processors) except Exception as e: error = f"Failure occurs while calling `get_config_overrides`: {e}" trace = traceback.format_exc() fill_result_with_error(result, error, trace, models_to_create) logger.error(result["error"][0]) return result # Just for us to see this easily in the report if "vocab_size" in config_overrides: result["vocab_size"] = config_overrides["vocab_size"] # Update attributes that `vocab_size` involves for k, v in config_overrides.items(): if hasattr(tiny_config, k): setattr(tiny_config, k, v) # So far, we only have to deal with `text_config`, as `config_overrides` contains text-related attributes only. # `FuyuConfig` saves data under both FuyuConfig and its `text_config`. This is not good, but let's just update # every involved fields to avoid potential failure. if ( hasattr(tiny_config, "text_config") and tiny_config.text_config is not None and hasattr(tiny_config.text_config, k) ): setattr(tiny_config.text_config, k, v) # If `text_config_dict` exists, we need to update its value here too in order to # make # `save_pretrained -> from_pretrained` work. if hasattr(tiny_config, "text_config_dict"): tiny_config.text_config_dict[k] = v if result["warnings"]: logger.warning(result["warnings"][0][0]) # update `result["processor"]` result["processor"] = {type(p).__name__: p.__class__.__name__ for p in processors} for pytorch_arch in models_to_create["pytorch"]: result["pytorch"][pytorch_arch.__name__] = {} error = None try: model = build_model(pytorch_arch, tiny_config, output_dir=output_dir) except Exception as e: model = None error = f"Failed to create the pytorch model for {pytorch_arch}: {e}" trace = traceback.format_exc() result["pytorch"][pytorch_arch.__name__]["model"] = model.__class__.__name__ if model is not None else None result["pytorch"][pytorch_arch.__name__]["checkpoint"] = ( get_checkpoint_dir(output_dir, pytorch_arch) if model is not None else None ) if error is not None: result["pytorch"][pytorch_arch.__name__]["error"] = (error, trace) logger.error(f"{pytorch_arch.__name__}: {error}") for tensorflow_arch in models_to_create["tensorflow"]: # Make PT/TF weights compatible pt_arch_name = tensorflow_arch.__name__[2:] # Remove `TF` pt_arch = getattr(transformers_module, pt_arch_name) result["tensorflow"][tensorflow_arch.__name__] = {} error = None if pt_arch.__name__ in result["pytorch"] and result["pytorch"][pt_arch.__name__]["checkpoint"] is not None: ckpt = get_checkpoint_dir(output_dir, pt_arch) # Use the same weights from PyTorch. try: model = tensorflow_arch.from_pretrained(ckpt) model.save_pretrained(ckpt) except Exception as e: # Conversion may fail. Let's not create a model with different weights to avoid confusion (for now). model = None error = f"Failed to convert the pytorch model to the tensorflow model for {pt_arch}: {e}" trace = traceback.format_exc() else: try: model = build_model(tensorflow_arch, tiny_config, output_dir=output_dir) except Exception as e: model = None error = f"Failed to create the tensorflow model for {tensorflow_arch}: {e}" trace = traceback.format_exc() result["tensorflow"][tensorflow_arch.__name__]["model"] = ( model.__class__.__name__ if model is not None else None ) result["tensorflow"][tensorflow_arch.__name__]["checkpoint"] = ( get_checkpoint_dir(output_dir, tensorflow_arch) if model is not None else None ) if error is not None: result["tensorflow"][tensorflow_arch.__name__]["error"] = (error, trace) logger.error(f"{tensorflow_arch.__name__}: {error}") if not result["error"]: del result["error"] if not result["warnings"]: del result["warnings"] return result def build_tiny_model_summary(results, organization=None, token=None): """Build a summary: a dictionary of the form { model architecture name: { "tokenizer_classes": [...], "processor_classes": [...], "model_classes": [...], } .. } """ tiny_model_summary = {} for config_name in results: processors = [key for key, value in results[config_name]["processor"].items()] tokenizer_classes = sorted([x for x in processors if x.endswith("TokenizerFast") or x.endswith("Tokenizer")]) processor_classes = sorted([x for x in processors if x not in tokenizer_classes]) for framework in FRAMEWORKS: if framework not in results[config_name]: continue for arch_name in results[config_name][framework]: model_classes = [arch_name] base_arch_name = arch_name[2:] if arch_name.startswith("TF") else arch_name # tiny model is not created for `arch_name` if results[config_name][framework][arch_name]["model"] is None: model_classes = [] if base_arch_name not in tiny_model_summary: tiny_model_summary[base_arch_name] = {} tiny_model_summary[base_arch_name].update( { "tokenizer_classes": tokenizer_classes, "processor_classes": processor_classes, } ) tiny_model_summary[base_arch_name]["model_classes"] = sorted( tiny_model_summary[base_arch_name].get("model_classes", []) + model_classes ) if organization is not None: repo_name = f"tiny-random-{base_arch_name}" # composite models' checkpoints have more precise repo. names on the Hub. if base_arch_name in COMPOSITE_MODELS: repo_name = f"tiny-random-{COMPOSITE_MODELS[base_arch_name]}" repo_id = f"{organization}/{repo_name}" try: commit_hash = hf_api.repo_info(repo_id, token=token).sha except Exception: # The directory is not created, but processor(s) is/are included in `results`. logger.warning(f"Failed to get information for {repo_id}.\n{traceback.format_exc()}") del tiny_model_summary[base_arch_name] continue tiny_model_summary[base_arch_name]["sha"] = commit_hash return tiny_model_summary def build_failed_report(results, include_warning=True): failed_results = {} for config_name in results: if "error" in results[config_name]: if config_name not in failed_results: failed_results[config_name] = {} failed_results[config_name] = {"error": results[config_name]["error"]} if include_warning and "warnings" in results[config_name]: if config_name not in failed_results: failed_results[config_name] = {} failed_results[config_name]["warnings"] = results[config_name]["warnings"] for framework in FRAMEWORKS: if framework not in results[config_name]: continue for arch_name in results[config_name][framework]: if "error" in results[config_name][framework][arch_name]: if config_name not in failed_results: failed_results[config_name] = {} if framework not in failed_results[config_name]: failed_results[config_name][framework] = {} if arch_name not in failed_results[config_name][framework]: failed_results[config_name][framework][arch_name] = {} error = results[config_name][framework][arch_name]["error"] failed_results[config_name][framework][arch_name]["error"] = error return failed_results def build_simple_report(results): text = "" failed_text = "" for config_name in results: for framework in FRAMEWORKS: if framework not in results[config_name]: continue for arch_name in results[config_name][framework]: if "error" in results[config_name][framework][arch_name]: result = results[config_name][framework][arch_name]["error"] failed_text += f"{arch_name}: {result[0]}\n" else: result = ("OK",) text += f"{arch_name}: {result[0]}\n" return text, failed_text def update_tiny_model_summary_file(report_path): with open(os.path.join(report_path, "tiny_model_summary.json")) as fp: new_data = json.load(fp) with open("tests/utils/tiny_model_summary.json") as fp: data = json.load(fp) for key, value in new_data.items(): if key not in data: data[key] = value else: for attr in ["tokenizer_classes", "processor_classes", "model_classes"]: # we might get duplication here. We will remove them below when creating `updated_data`. data[key][attr].extend(value[attr]) new_sha = value.get("sha", None) if new_sha is not None: data[key]["sha"] = new_sha updated_data = {} for key in sorted(data.keys()): updated_data[key] = {} for attr, value in data[key].items(): # deduplication and sort updated_data[key][attr] = sorted(set(value)) if attr != "sha" else value with open(os.path.join(report_path, "updated_tiny_model_summary.json"), "w") as fp: json.dump(updated_data, fp, indent=4, ensure_ascii=False) def create_tiny_models( output_path, all, model_types, models_to_skip, no_check, upload, organization, token, num_workers=1, ): clone_path = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) if os.getcwd() != clone_path: raise ValueError(f"This script should be run from the root of the clone of `transformers` {clone_path}") report_path = os.path.join(output_path, "reports") os.makedirs(report_path) _pytorch_arch_mappings = [ x for x in dir(transformers_module) if x.startswith("MODEL_") and x.endswith("_MAPPING") and x != "MODEL_NAMES_MAPPING" ] _tensorflow_arch_mappings = [ x for x in dir(transformers_module) if x.startswith("TF_MODEL_") and x.endswith("_MAPPING") ] pytorch_arch_mappings = [getattr(transformers_module, x) for x in _pytorch_arch_mappings] tensorflow_arch_mappings = [getattr(transformers_module, x) for x in _tensorflow_arch_mappings] config_classes = CONFIG_MAPPING.values() if not all: config_classes = [CONFIG_MAPPING[model_type] for model_type in model_types] # A map from config classes to tuples of processors (tokenizer, feature extractor, processor) classes processor_type_map = {c: get_processor_types_from_config_class(c) for c in config_classes} to_create = {} for c in config_classes: processors = processor_type_map[c] models = get_architectures_from_config_class(c, pytorch_arch_mappings, models_to_skip) tf_models = get_architectures_from_config_class(c, tensorflow_arch_mappings, models_to_skip) if len(models) + len(tf_models) > 0: to_create[c] = {"processor": processors, "pytorch": models, "tensorflow": tf_models} results = {} if num_workers <= 1: for c, models_to_create in list(to_create.items()): print(f"Create models for {c.__name__} ...") result = build(c, models_to_create, output_dir=os.path.join(output_path, c.model_type)) results[c.__name__] = result print("=" * 40) else: all_build_args = [] for c, models_to_create in list(to_create.items()): all_build_args.append((c, models_to_create, os.path.join(output_path, c.model_type))) with multiprocessing.Pool() as pool: results = pool.starmap(build, all_build_args) results = {buid_args[0].__name__: result for buid_args, result in zip(all_build_args, results)} if upload: if organization is None: raise ValueError("The argument `organization` could not be `None`. No model is uploaded") to_upload = [] for model_type in os.listdir(output_path): # This is the directory containing the reports if model_type == "reports": continue for arch in os.listdir(os.path.join(output_path, model_type)): if arch == "processors": continue to_upload.append(os.path.join(output_path, model_type, arch)) to_upload = sorted(to_upload) upload_results = {} if len(to_upload) > 0: for model_dir in to_upload: try: upload_model(model_dir, organization, token) except Exception as e: error = f"Failed to upload {model_dir}. {e.__class__.__name__}: {e}" logger.error(error) upload_results[model_dir] = error with open(os.path.join(report_path, "failed_uploads.json"), "w") as fp: json.dump(upload_results, fp, indent=4) # Build the tiny model summary file. The `tokenizer_classes` and `processor_classes` could be both empty lists. # When using the items in this file to update the file `tests/utils/tiny_model_summary.json`, the model # architectures with `tokenizer_classes` and `processor_classes` being both empty should **NOT** be added to # `tests/utils/tiny_model_summary.json`. tiny_model_summary = build_tiny_model_summary(results, organization=organization, token=token) with open(os.path.join(report_path, "tiny_model_summary.json"), "w") as fp: json.dump(tiny_model_summary, fp, indent=4) with open(os.path.join(report_path, "tiny_model_creation_report.json"), "w") as fp: json.dump(results, fp, indent=4) # Build the warning/failure report (json format): same format as the complete `results` except this contains only # warnings or errors. failed_results = build_failed_report(results) with open(os.path.join(report_path, "failed_report.json"), "w") as fp: json.dump(failed_results, fp, indent=4) simple_report, failed_report = build_simple_report(results) # The simplified report: a .txt file with each line of format: # {model architecture name}: {OK or error message} with open(os.path.join(report_path, "simple_report.txt"), "w") as fp: fp.write(simple_report) # The simplified failure report: same above except this only contains line with errors with open(os.path.join(report_path, "simple_failed_report.txt"), "w") as fp: fp.write(failed_report) update_tiny_model_summary_file(report_path=os.path.join(output_path, "reports")) if __name__ == "__main__": # This has to be `spawn` to avoid hanging forever! multiprocessing.set_start_method("spawn") def list_str(values): return values.split(",") parser = argparse.ArgumentParser() parser.add_argument("--all", action="store_true", help="Will create all tiny models.") parser.add_argument( "--no_check", action="store_true", help="If set, will not check the validity of architectures. Use with caution.", ) parser.add_argument( "-m", "--model_types", type=list_str, help="Comma-separated list of model type(s) from which the tiny models will be created.", ) parser.add_argument( "--models_to_skip", type=list_str, help=( "Comma-separated list of model class names(s) from which the tiny models won't be created.\nThis is usually " "the list of model classes that have their tiny versions already uploaded to the Hub." ), ) parser.add_argument("--upload", action="store_true", help="If to upload the created tiny models to the Hub.") parser.add_argument( "--organization", default=None, type=str, help="The organization on the Hub to which the tiny models will be uploaded.", ) parser.add_argument( "--token", default=None, type=str, help="A valid authentication token for HuggingFace Hub with write access." ) parser.add_argument("output_path", type=Path, help="Path indicating where to store generated model.") parser.add_argument("--num_workers", default=1, type=int, help="The number of workers to run.") args = parser.parse_args() if not args.all and not args.model_types: raise ValueError("Please provide at least one model type or pass `--all` to export all architectures.") create_tiny_models( args.output_path, args.all, args.model_types, args.models_to_skip, args.no_check, args.upload, args.organization, args.token, args.num_workers, )