from ultralytics import YOLO import cv2 # Load the YOLO model model = YOLO("make.pt") # Define the mapping of class indices to car types class_map = { 0: 'beige', 1: 'black', 2: 'blue', 3: 'brown', 4: 'gold', 5: 'green', 6: 'grey', 7: 'orange', 8: 'pink', 9: 'purple', 10: 'red', 11: 'sivler', 12: 'tan', 13: 'white', 14: 'yellow' } # Open the video file video_path = 'DATA\greencar.png' result = model(video_path) # cap = cv2.VideoCapture(video_path) # while True: # ret, frame = cap.read() # if not ret: # break # # Perform object detection # results = model(frame) # # Assuming the top prediction is what you're interested in # top_prediction_index = results[0].probs.top5[0] # Index of the highest probability class # top_prediction_prob = results[0].probs.top5conf[0].item() # Highest probability # # Get the car type from the class_map # # car_type = class_map[top_prediction_index] # print('/n') # print(f"{class_map[top_prediction_index]}") # cap.release() # cv2.destroyAllWindows()