diff --git "a/deepface/benchmarks/Evaluate-Results.ipynb" "b/deepface/benchmarks/Evaluate-Results.ipynb" new file mode 100644--- /dev/null +++ "b/deepface/benchmarks/Evaluate-Results.ipynb" @@ -0,0 +1,1844 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "59b076ef", + "metadata": {}, + "source": [ + "# Evaluate DeepFace's Results In The Big Picture" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "79200f8c", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from IPython.display import display, HTML\n", + "from sklearn import metrics\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "bbc11592", + "metadata": {}, + "outputs": [], + "source": [ + "alignment = [False, True]\n", + "models = [\"Facenet512\", \"Facenet\", \"VGG-Face\", \"ArcFace\", \"Dlib\", \"GhostFaceNet\", \"SFace\", \"OpenFace\", \"DeepFace\", \"DeepID\"]\n", + "detectors = [\"retinaface\", \"mtcnn\", \"fastmtcnn\", \"dlib\", \"yolov8\", \"yunet\", \"centerface\", \"mediapipe\", \"ssd\", \"opencv\", \"skip\"]\n", + "distance_metrics = [\"euclidean\", \"euclidean_l2\", \"cosine\"]" + ] + }, + { + "cell_type": "markdown", + "id": "e0dabf1b", + "metadata": {}, + "source": [ + "# Main results" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "03b09fa3", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "euclidean for alignment False\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Facenet512FacenetVGG-FaceArcFaceDlibGhostFaceNetSFaceOpenFaceDeepFaceDeepID
detector
retinaface96.192.895.784.188.383.278.670.867.464.3
mtcnn95.992.595.581.889.383.276.370.965.963.2
fastmtcnn96.393.096.082.290.082.776.871.266.564.3
dlib96.089.094.182.696.365.673.175.961.861.9
yolov894.890.895.283.288.477.671.668.968.266.3
yunet97.996.596.384.191.482.778.271.765.565.2
centerface97.495.495.883.290.382.076.569.965.762.9
mediapipe94.987.193.171.191.961.973.277.661.762.4
ssd97.294.996.783.988.684.982.069.966.764.0
opencv94.190.295.889.891.291.086.971.168.461.1
skip92.064.190.656.669.075.181.457.460.860.7
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "euclidean_l2 for alignment False\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Facenet512FacenetVGG-FaceArcFaceDlibGhostFaceNetSFaceOpenFaceDeepFaceDeepID
detector
retinaface98.095.995.795.788.489.590.670.867.764.6
mtcnn97.896.295.595.989.288.091.170.967.064.0
fastmtcnn97.796.696.095.989.687.889.771.267.864.2
dlib96.589.994.193.895.663.075.075.962.661.8
yolov897.795.895.295.088.188.789.868.968.965.3
yunet98.396.896.396.191.788.090.571.767.663.2
centerface97.496.395.895.890.286.889.369.968.463.1
mediapipe96.390.093.189.391.865.674.677.664.961.6
ssd97.997.096.796.689.491.593.069.968.764.9
opencv96.292.995.893.291.593.391.771.168.361.6
skip91.467.690.657.269.378.483.457.462.661.6
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cosine for alignment False\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Facenet512FacenetVGG-FaceArcFaceDlibGhostFaceNetSFaceOpenFaceDeepFaceDeepID
detector
retinaface98.095.995.795.788.489.590.670.867.763.7
mtcnn97.896.295.595.989.288.091.170.967.064.0
fastmtcnn97.796.696.095.989.687.889.771.267.862.7
dlib96.589.994.193.895.663.075.075.962.661.7
yolov897.795.895.295.088.188.789.868.968.965.3
yunet98.396.896.396.191.788.090.571.767.663.2
centerface97.496.395.895.890.286.889.369.968.462.6
mediapipe96.390.093.189.391.864.874.677.664.961.6
ssd97.997.096.796.689.491.593.069.968.763.8
opencv96.292.995.893.291.593.391.771.168.161.1
skip91.467.690.654.869.378.483.457.462.661.1
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "euclidean for alignment True\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Facenet512FacenetVGG-FaceArcFaceDlibGhostFaceNetSFaceOpenFaceDeepFaceDeepID
detector
retinaface95.993.595.885.288.985.980.269.467.065.6
mtcnn95.293.895.983.789.483.077.470.266.563.3
fastmtcnn96.093.495.883.591.182.877.769.466.764.0
dlib96.090.894.588.696.865.766.375.863.460.4
yolov894.491.995.084.189.277.673.468.769.066.5
yunet97.396.196.084.992.284.079.470.965.865.2
centerface97.695.895.783.690.482.877.468.965.562.8
mediapipe95.188.692.973.293.163.272.578.761.862.2
ssd88.985.687.075.883.179.176.966.863.462.5
opencv88.284.287.373.084.483.881.166.465.559.6
skip92.064.190.656.669.075.181.457.460.860.7
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "euclidean_l2 for alignment True\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Facenet512FacenetVGG-FaceArcFaceDlibGhostFaceNetSFaceOpenFaceDeepFaceDeepID
detector
retinaface98.496.495.896.689.190.592.469.467.764.4
mtcnn97.696.895.996.090.089.890.570.266.464.0
fastmtcnn98.197.295.896.491.089.590.069.467.464.1
dlib97.092.694.595.196.463.369.875.866.559.5
yolov897.395.795.095.588.888.991.968.767.566.0
yunet97.997.496.096.791.689.191.070.966.563.6
centerface97.796.895.796.590.987.589.368.967.864.0
mediapipe96.190.692.990.392.664.475.478.764.763.0
ssd88.787.587.086.283.382.284.666.864.162.6
opencv87.684.887.384.684.085.083.666.463.860.9
skip91.467.690.657.269.378.483.457.462.661.6
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cosine for alignment True\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Facenet512FacenetVGG-FaceArcFaceDlibGhostFaceNetSFaceOpenFaceDeepFaceDeepID
detector
retinaface98.496.495.896.689.190.592.469.467.764.4
mtcnn97.696.895.996.090.089.890.570.266.363.0
fastmtcnn98.197.295.896.491.089.590.069.467.463.6
dlib97.092.694.595.196.463.369.875.866.558.7
yolov897.395.795.095.588.888.991.968.767.565.9
yunet97.997.496.096.791.689.191.070.966.563.5
centerface97.796.895.796.590.987.589.368.967.863.6
mediapipe96.190.692.990.392.664.375.478.764.863.0
ssd88.787.587.086.283.382.284.566.863.862.6
opencv87.684.987.284.684.085.083.666.263.760.1
skip91.467.690.654.869.378.483.457.462.661.1
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for align in alignment:\n", + " for metric in distance_metrics:\n", + " df = pd.read_csv(f\"results/pivot_{metric}_with_alignment_{align}.csv\")\n", + " df = df.rename(columns = {'Unnamed: 0': 'detector'})\n", + " df = df.set_index('detector')\n", + "\n", + " print(f\"{metric} for alignment {align}\")\n", + " display(HTML(df.to_html()))\n", + " display(HTML(\"
\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "aef6dc64", + "metadata": {}, + "outputs": [], + "source": [ + "def create_github_table():\n", + " for metric in distance_metrics:\n", + " for align in [True, False]:\n", + " df = pd.read_csv(f\"results/pivot_{metric}_with_alignment_{align}.csv\")\n", + " df = df.rename(columns = {'Unnamed: 0': 'detector'})\n", + " df = df.set_index('detector')\n", + " \n", + " print(f\"Performance Matrix for {metric} while alignment is {align} \\n\")\n", + " header = \"| | \"\n", + " for col_name in df.columns.tolist():\n", + " header += f\"{col_name} |\"\n", + " print(header)\n", + " # -------------------------------\n", + " seperator = \"| --- | \"\n", + " for col_name in df.columns.tolist():\n", + " seperator += \" --- |\"\n", + " print(seperator)\n", + " # -------------------------------\n", + " for index, instance in df.iterrows():\n", + " line = f\"| {instance.name} |\"\n", + " for i in instance.values:\n", + " if i < 97.5:\n", + " line += f\"{i} |\"\n", + " else:\n", + " line += f\"**{i}** |\"\n", + " print(line)\n", + " \n", + " print(\"\\n---------------------------\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "5004caaa", + "metadata": {}, + "outputs": [], + "source": [ + "# create_github_table()" + ] + }, + { + "cell_type": "markdown", + "id": "965c655f", + "metadata": {}, + "source": [ + "# Alignment impact" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "6ce20a58", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
max_alignment_impact
ArcFace6.0
DeepFace3.9
GhostFaceNet2.7
Facenet2.7
SFace2.1
Dlib1.4
DeepID1.4
OpenFace1.1
Facenet5120.5
VGG-Face0.4
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "align_df = None\n", + "\n", + "for distance_metric in distance_metrics:\n", + " df1 = (\n", + " pd.read_csv(f\"results/pivot_{distance_metric}_with_alignment_True.csv\")\n", + " .rename(columns = {'Unnamed: 0': 'detector'})\n", + " .set_index('detector')\n", + " )\n", + " df2 = (\n", + " pd.read_csv(f\"results/pivot_{distance_metric}_with_alignment_False.csv\")\n", + " .rename(columns = {'Unnamed: 0': 'detector'})\n", + " .set_index('detector')\n", + " )\n", + " df1 = df1[df1.index != \"skip\"]\n", + " df2 = df2[df2.index != \"skip\"]\n", + " pivot_df = df1.subtract(df2)\n", + " \n", + " pivot_df = pivot_df.max()\n", + " pivot_df = pd.DataFrame(pivot_df, columns=[f'alignment_impact_of_{distance_metric}'])\n", + " # display(HTML(pivot_df.to_html()))\n", + "\n", + " if align_df is None:\n", + " align_df = pivot_df.copy()\n", + " else:\n", + " align_df = align_df.merge(pivot_df, left_index=True, right_index=True)\n", + "\n", + "# display(HTML(align_df.to_html()))\n", + "align_df = pd.DataFrame(align_df.max(axis=1), columns = [\"max_alignment_impact\"])\n", + "align_df = align_df.sort_values(by=[\"max_alignment_impact\"], ascending=False)\n", + "display(HTML(align_df.to_html()))" + ] + }, + { + "cell_type": "markdown", + "id": "f66e349f", + "metadata": {}, + "source": [ + "## Detection impact" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "34eca61b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
max_detection_impact
ArcFace41.8
Facenet32.4
Dlib27.3
OpenFace20.2
GhostFaceNet15.9
SFace9.6
DeepFace7.6
Facenet5126.9
VGG-Face6.1
DeepID5.6
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "detect_df = None\n", + "for distance_metric in distance_metrics:\n", + " tmp_df = (\n", + " pd.read_csv(f\"results/pivot_{distance_metric}_with_alignment_False.csv\")\n", + " .rename(columns = {'Unnamed: 0': 'detector'})\n", + " .set_index('detector')\n", + " )\n", + " ref_df = tmp_df[tmp_df.index == \"skip\"]\n", + " \n", + " j = []\n", + " for i in range(0, len(detectors) - 1):\n", + " j.append(ref_df)\n", + " minus_df = pd.concat(j)\n", + " \n", + " tmp_df = tmp_df[tmp_df.index != \"skip\"]\n", + " minus_df.index = tmp_df.index\n", + " \n", + " # print(\"performance with no detection\")\n", + " # display(HTML(ref_df.to_html()))\n", + " \n", + " # print(\"pivot\")\n", + " tmp_df = tmp_df.subtract(minus_df)\n", + " # display(HTML(tmp_df.to_html()))\n", + " \n", + " # print(\"avg of detector impact for models\")\n", + " # avg_df = pd.DataFrame(tmp_df.mean()).T\n", + " avg_df = pd.DataFrame(tmp_df.max(), columns=[f\"detection_impact_of_{distance_metric}\"])\n", + " # display(HTML(avg_df.to_html()))\n", + "\n", + " if detect_df is None:\n", + " detect_df = avg_df.copy()\n", + " else:\n", + " detect_df = detect_df.merge(avg_df, left_index=True, right_index=True)\n", + "\n", + "# display(HTML(detect_df.to_html()))\n", + "detect_df = pd.DataFrame(detect_df.max(axis=1), columns = [\"max_detection_impact\"])\n", + "detect_df = detect_df.sort_values(by=[\"max_detection_impact\"], ascending=False)\n", + "display(HTML(detect_df.to_html()))\n" + ] + }, + { + "cell_type": "markdown", + "id": "1bdf64a3", + "metadata": {}, + "source": [ + "# facial recognition model's best scores" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "0cb1f232", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
best_accuracy_score
Facenet51298.4
Human-beings97.5
Facenet97.4
Dlib96.8
VGG-Face96.7
ArcFace96.7
GhostFaceNet93.3
SFace93.0
OpenFace78.7
DeepFace69.0
DeepID66.5
\n", + "
" + ], + "text/plain": [ + " best_accuracy_score\n", + "Facenet512 98.4\n", + "Human-beings 97.5\n", + "Facenet 97.4\n", + "Dlib 96.8\n", + "VGG-Face 96.7\n", + "ArcFace 96.7\n", + "GhostFaceNet 93.3\n", + "SFace 93.0\n", + "OpenFace 78.7\n", + "DeepFace 69.0\n", + "DeepID 66.5" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.DataFrame()\n", + "for align in alignment:\n", + " for distance_metric in distance_metrics:\n", + " tmp_df = (\n", + " pd.read_csv(f\"results/pivot_{distance_metric}_with_alignment_{align}.csv\")\n", + " .rename(columns = {'Unnamed: 0': 'detector'})\n", + " .set_index('detector')\n", + " )\n", + " df = pd.concat([df, tmp_df])\n", + "\n", + "pivot_df = pd.DataFrame(df.max(), columns = [\"best_accuracy_score\"])\n", + "\n", + "# add human comparison\n", + "pivot_df.loc[\"Human-beings\"] = 97.5\n", + "\n", + "pivot_df = pivot_df.sort_values(by = [\"best_accuracy_score\"], ascending = False)\n", + "pivot_df" + ] + }, + { + "cell_type": "markdown", + "id": "b81ebe92", + "metadata": {}, + "source": [ + "# ROC Curves" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "bcb4db0a", + "metadata": {}, + "outputs": [], + "source": [ + "def plot_roc(model_name, detector_backend, distance_metric, align):\n", + " alignment_text = \"aligned\" if align == True else \"unaligned\"\n", + "\n", + " df = pd.read_csv(f\"outputs/test/{model_name}_{detector_backend}_{distance_metric}_{alignment_text}.csv\")\n", + " \n", + " #normalize\n", + " df[\"distances_normalized\"] = df[\"distances\"] / df[\"distances\"].max()\n", + " df[\"actuals_normalized\"] = 0\n", + " idx = df[df[\"actuals\"] == False].index\n", + " df.loc[idx, \"actuals_normalized\"] = 1\n", + " \n", + " y_actual = df[\"actuals_normalized\"].values.tolist()\n", + " y_pred_proba = df[\"distances_normalized\"].values.tolist()\n", + " \n", + " fpr, tpr, _ = metrics.roc_curve(y_actual, y_pred_proba)\n", + " auc = metrics.roc_auc_score(y_actual, y_pred_proba)\n", + " auc = round(auc, 4)\n", + "\n", + " # best accuracy score\n", + " result_path = f\"results/pivot_{distance_metric}_with_alignment_{align}.csv\"\n", + " result_df = pd.read_csv(result_path)\n", + " acc = result_df[result_df[\"Unnamed: 0\"] == detector_backend][model_name].values[0]\n", + "\n", + " label = f\"{model_name}_{detector_backend}_{distance_metric}_{alignment_text} (acc: {acc}, auc: {auc})\"\n", + "\n", + " return acc, auc, fpr, tpr, label" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "84b3d5b5", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXwAAAKnCAYAAAA1L4U5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhU9dn/8c/M5MxkJoGoYFgkgopFERfAQt21UnF5XH5txV2aujxabW1pXHhE0LpXq9hqpS7BrZaqtWqt1SotbqWILAqKWlwwlaVQKyFMmJnMfH9/UCIhs5zJnDmzvV/Xlesi8z1zzp2FZOaTe+6vxxhjBAAAAAAAAAAoed5CFwAAAAAAAAAAcAaBLwAAAAAAAACUCQJfAAAAAAAAACgTBL4AAAAAAAAAUCYIfAEAAAAAAACgTBD4AgAAAAAAAECZIPAFAAAAAAAAgDJB4AsAAAAAAAAAZaKq0AW4LZFIaOXKlerVq5c8Hk+hywEAAAAAAABQAYwx2rBhgwYOHCivN399uBUX+K5cuVINDQ2FLgMAAAAAAABABWppadGgQYPydv6KC3x79eolafMntnfv3gWuBgAAAAAAAEAlaG1tVUNDQ2c+mS8VF/huGePQu3dvAl8AAAAAAAAArsr3mFk2bQMAAAAAAACAMkHgCwAAAAAAAABlgsAXAAAAAAAAAMoEgS8AAAAAAAAAlAkCXwAAAAAAAAAoEwS+AAAAAAAAAFAmCHwBAAAAAAAAoEwQ+AIAAAAAAABAmSDwBQAAAAAAAIAyQeALAAAAAAAAAGWCwBcAAAAAAAAAygSBLwAAAAAAAACUCQJfAAAAAAAAACgTBL4AAAAAAAAAUCYIfAEAAAAAAACgTBD4AgAAAAAAAECZIPAFAAAAAAAAgDJB4AsAAAAAAAAAZYLAFwAAAAAAAADKBIEvAAAAAAAAAJSJgga+r7zyio4//ngNHDhQHo9HTz31VMb7zJkzR6NGjVIgENDQoUP1wAMP5L1OAAAAAAAAACgFBQ18N27cqH333Vd33XWXreM//vhjHXfccTriiCO0ePFi/fCHP9S5556rF154Ic+VAgAAAAAAAEDxqyrkxY855hgdc8wxto+fMWOGdtllF/3sZz+TJO2555567bXXdPvtt2v8+PH5KhMAAAAAAAAASkJBA99szZ07V+PGjety2/jx4/XDH/6wMAUBAFBGjDHqiCYKXQYAVBZjpFi40FW4zhij9nik0GUAQEUxxshENhW6jIrWumGDK9cpqcB39erV6tevX5fb+vXrp9bWVrW3tysYDHa7TyQSUSTy5QOJ1tbWvNcJAICbnAhqjTH6/a0Lte6fbQ5VBQAAYI8xRlJHocsAgJz5Mqy3Rze6UkdJBb49ceONN+qaa64pdBkAkBVjjNpj8UKXgRJgjNFz09/Svz7mD5oAuiNEAVD8jKIbfisTX1voQgCUKJ/HKnQJ8kj6+oAztH2gX9rjNkSMfuxCPSUV+Pbv319r1qzpctuaNWvUu3fvpN29kjR58mRNmjSp8/3W1lY1NDTktU4A7iq3cNQY6eQZc/XuKgI8/FcioZpE8pf7Wsaj8zb2dexS/w7+U88Nm+7Y+VDepsyKa8i/Cl1FeTKS4h5PbifxSG/sWq8NQb8jNQEAUGmKIUhEanZD1kpUUoHvAQccoOeee67LbS+++KIOOOCAlPcJBAIKBAL5Lg1AEm4EsYSj5cQoKJdm+Rm3fgEayRPLeEggnvoYj4zOX+tRNDgo49UOfv1y+eLRbIvswpuI6uQ/5XQKoKwZSXFvjkGsDX8fupNagzyGBYoJwU9+7TCoQf9zyf9tTnCAQjPSpsc+VWIts8aRHW+/oEJn7Z5yPbGhVZqe/zoKGvi2tbVp+fLlne9//PHHWrx4sXbYYQftvPPOmjx5sj777DM99NBDkqQLLrhAd955py677DJ997vf1V/+8hc99thj+uMf/1ioDwFwDF2q+eZimOiQPfr31iPnjFGuDV65MsZoUzz3wf7GGGlTqvMYWY+dqcTaj3K+TmYePf/Ftfq8Y1cXruWMaPIXsXRRt/5DWbE2niPBdYHtYhpy5Lq8PkE3Ruow3vxdwG4dkh775z5aG6ktdClZ6dMwWCc2TSNEQVExm/9jF7oMewh+XBO+6x+FLgFACbIG1GjHC/Ytisc6HssrT5on8V6/O0UWNPB98803dcQRR3S+v2X0wsSJE/XAAw9o1apV+vTTTzvXd9llF/3xj3/Uj370I91xxx0aNGiQ7rvvPo0fP9712oFsZApz7YejpRda2sipHJE+HDWqfvh/5F2zxKVqHPKFpJ+lXjaS2tP8Itn8PCr37rDz+9VrhTf3jpZ0L/02Ho8W7vcjtfVi5E4qgfYWfWvQFZIn+ZPjqr4ReYbmfp2gMcXwOAklxOMzOf1hKlOYayTN+mTfkgtZnbDj4CE6dco16f9PWiFl+gJUBQJpn3igPBhjZGK5beDpGiOtnfGWYqvc2bgGAHqqmIJEpJYpZK1EHrN5J4eK0draqrq6Oq1fv169e/cudDmoAMYYfXvGXC1Y8Z9cz6Qn/Ndof+8HjtSF0mYknT2gnxZXpwh0jXTSO5eo/4bS6WJ1W+2GFo1afLs8RfBrsOoru6nfL29LG9r03m57+XyZ9nwFSosxRrOunaqV/yit321OBbGZENTCLmOM1s54W9EVxfLKqvJE8ANUHoJEOM2tXLKkZvgChZDrqIVwNG477B0+oLcev+CA5M8PoxsVurW0nhAXnf57S43P5/wE3A3GGLWnGaPQ3tGuxb8/NuV6VcJfkmHvDgOqdfSFQ115IlVl7SOP53/yfp1gVXXGB4meYJAHknCVMUYdkcK/YiQW2WQ77N1xyK469Zqb5SmCpIUgFsXGxBIlGfaWWoBK8AMAKBUEvuhUbjNkneD0HNo3p4xTyJ+6Qy9o+dI8iNzqv2vTcskfcqSmSmGMUYepluTZ3B5bxIwxOu/P5+ntdW+nPa5Km3ddf/6bf1J1VdfhGR3RhGa9sUCSNOGq4aryJ3+59Jrzv6eO9+3NSttt9ovyVuc2pCNTsFnl54kUik+xhKNOMTKaNe1yrf3EjZnZ9l14zyOyAtUp1wlZYVdJjTZwiIl++Rh+wJSx8qR5vFlMCFABAMgPAl9IcnLsAFLZf/D26lPjd+ZBrT8k+WtyP08OjDHqiJbGkyljjH7/s4Va19JW6FJsG6OzNMbmsU+8sTTt+ppvjJcvEU25bucpYXDUKFX335EnZSg5uYa1xRqOlpuBw4Yr2LuOnzEFUlYBKbNh5fH75C2RwBcAAOQHgW+FyNS9m83YgUqUdtSCTem7d7W5nTgWTr0eTbPmsExhbikGqJWqbv2H8qYJeyUpsOeeGvLIw2lHXTByAKXIGKNZUy/Tyg+WFbqUosSIhOLmWghLQFpW/IN7y2Ol3gQRAABUBgLfCpBt926msQOVKGNYmytjpObxUss8B06VW+dtOYe5xbRJl1uCw3bTLgveJMxFyXFijEIsssmxsLeYwlGnELIWLzbgyl2pzYZ1CiMSAACAROBbEdpj9rt3HR07APtiYVthrzFSx06HSImAFOnesW2M0e9vXah1/3QnrC21ANWbiBbN8z5rj2Hq/+B9SvdM1M5mX5kQ5qIU5aMzN9N82EwIRwurrEYO2GCicdfD3nILSAk+AQBAJSPwrTC5bRpWoTKNWnBCNLw5zDUB6ZIlkr/7xlhG0u+nv6t1C8PSwlfyW4/shbl2AlQ74wJyZYxRe8emvJ1/a+e/dL4++Pz9jMfNmfCyQlbqDc4IYoHUOiIRR8Ne5sMWt4xhboWPHHBrAy4CUgAAgPJB4FthQn6fQn6+7LY5OGoh02We/PwGrY7tKV35Ts7nc6Lz1k6Ya6dL1ROs1qY8P4Gc+Px39N7n7+X1Gl340388I+tHqqb3DjxxBlLINK4hFvnyDzi5duZKdOcWM0YXpOcf3FveGovvXwAAAGSF5A9Ix+aohVx1mMDmsNcGu523X3n9NXmDSTqFjdF5fz5Pb697O8OVMncTRazl0lNHZDyu3Oyxwx568OgHU64Hq+jeBVLJdlyDFaiWVZ1b4IviZWIJ22FvuY0csIOuWwAAAPQEgS9gV9NyyR/q0V2NMWqPpx45EIskpMlLJUkTrhquKn/33ZVN+yatPPp4e2MURu6rSK/qpFMU2js2aX7rkoxdqqUmUwjrJAJdVLJcN1PLZiO1gcOGqyoQ6PG1kH+5ztY10S/n0WcaXUD4CQAAANhD4AvY5Q9J/pqs72aM0dnPna2la95NeUxV3NJ3dIMkac03xsuXiCY9bsvT4HN/4FPESn3NiLVU+s3XMtY2Z8IcBatSz5ktJYSwQHq5BrWSZGQ0a9rlWvvJR47UlGlcA6MYipvT4xg8fp+8LsyqBQAAAModgS+QZ+FYWEP+epi+1tboyPneGyS1hpTzJmgj60dqh2rmzAKVINsxCm4olo3Ucu1QrWQmGncs7PUP7i2P1f3VLQAAAACyR+CL8mXM5hm8uYjau78xRqa9PfkpNm5U/7ZdbZ2nbv2H2nn2s/KGUo+O2DlYrfEOBCR0xAKVoyMScTTs3XHIrjr1mpvlyWGYqlvdu2kDXSOtnfGWYqs25r2OcpdpHEMmjGsAAAAAnEPgi/JkjNQ8PuOGa8ZIJp7pCeZ/18PtUkeSY43RJ2eepciy5GFK3OuXDr1dknTw65fLF08+rkGSavYboV79z+VJL4C8yTRGwY5SGbXg9MgBJOcf3FveGqskvicAAACASkDgWwaMMWqPxVOuh6Op18pWLGwr7F0xu6/a1/ntnfOJQ3Iua+e//FF1NbUp1z1Bum4BZC/TfN5Y5MtNI61Atazq3ALfUmFiCVthrzWgRjtesK9yaFiuaHTnAgAAAMWFwLfEGWP07RlztWDFfwpdSvFqWr55w7VtmHC72n+be4grSUZS1Z57a/D993Wbrdsa3ihdu3nDNm8wmHZcAwBkqxjn87ol0/xds9UfPNONHCCwBAAAAFBOCHxLXHssbjvs3X/w9gpaJbL7da7zd7eevesPSf6a7sdsNZ5h99dfkzcY7NGljDF66hfvaPUnbdL/vdmjcwBAT2Uzn3fgsOGqCgTyXJE7sh3X4PH75M1hxiwAAAAAlAoC3zLy5pRxCqV5Mhu0fKXRwWRz/q4jl5KU8PoV9/plfD0LQWKR+OawN4NVvT5SlX9sj64BAHZkms9bLLN3M3Xm2jpHNG477PUP7i2P5c3pegAAAABQKgh8y0jI71PIXwZfUhvzd21r+JpkJR+hYIzRwpGTtL5uN708eb4jl3tg/yvV4U2+KVuHN6r/85zuyHUAIJlSmM+bj43U0o1rkBjZAAAAAKCylEE6iJKTaVzD1uMYUszftXcZI9Phkdrbk1+mdaPW1+3Wo3Mns6rXR9pU1ZZy05+R9SMVrOrZ2AgAKBa5dudm05lrh39wb3lrLAJdAAAAAPgvAl+4K9txDSnm7xpjZFIEuVuu8/GZZ6v9/Q9THhL3+aWDbpYkTbhquPx1Seb8Sjr/xfP1wX8+yFhqhzeqOafMSRnqBquCBBIAeiRdyGqicfk8Vue/E9540uOcKURaO+MtxVZtdOR0mTpz7aB7FwAAAAC6IvCFu7IZ15BiHIMxRp+cfoY2vvVOyrsaj0cL9/uR2g5tsHWpo54/Vh1VsdQH2MgjRtaP1A7VOxA8AHCUnREI3x4ySZL0rxsWulVWzujMBQAAAID8IPCFsxwa12CMUYeplqLdO9oS4bBe8Y5X26Hn5lqtJGlVrw/V4UsT9kraY4c99ODRD6Y9hg5eAD2RaUSC0yMQnGANqNGOF+ybcoSNHXTmAgAAAEB+EPgWOWOM2mOpX54bjubxpbvZcnBcw5O3LNTqj9anvm8ve52760L/1FMj7kh7zNC+u2reMelrJswFkA/ZbmCWbARCx6ZN+uX5Z0qSvnfPI6pyYdM2wloAAAAAKF4EvnmUKazNfH/p5Blz9e4qlzq7MnXnZhLNfVyDJHVEE+nD3v+q3dCiU+/8pryh7ucJx8I6/LHDM87VlQhzAeSPk927VkOt4r64PImu5+swMcXN5lcpePw+eXOciQsAAAAAKG0EvnlijNG3Z8zVghX/ceV6+w/eXkErhyf52XbnpjlNhwlIlyyR/KlDVlmhpOMaJCkW+TIkb/zpwbICXT+uRDisfxx0sLyJqKzAyfIGun/cltenDl9U0uZAN5QiXAaAnsoU5ma7wdlTK36hDpN6vEz845j0SrZVAgAAAAAqDYFvnrTH4o6FvcMH9NbjFxygdE2oQcuXW5eqjc3UOsPcVOvy6PefX691HbtKV6beUC0bVsDXPfCN++RLRB05P4DykzGIdeQi2YW5mazd9E9FEjm8wkLSwGHDVRVI/TMaAAAAAFAZCHxd8OaUcQrl8BLbnMPcbCXZTM0Yoyenv6vVH7e5VsaA3epU5fe6dj0ApS/bmbhu+E9kjf6y6tcyaY6Jm5guvOcRWYGez9+tCgQYTwMAAAAAIPB1Q8jvU8hfQp/qJJupdUTitsPevg21+n8/HpVz8FDlZ1MgAF05ORPXCdaAGu14wb5Skh9VWzZTi6cZ07DFwGHDFexdx888AAAAAEDOSiiFRLFINld3a04EtcYYtXe0J11LxL68PRxrlzdJlpLqvgCKl9MzcQdMGStPHjcwM8YonvjvhmlJ2ne33kwtU/cu3bkAAAAAAKcQ+KJT54zeSFwy8S5rW2+klmyurrN1GJ393FlatnJx0vVATLrvv/8+/LHDFPETkgClIG2g6/BMXP/g3vLWWHkLUY0x+u3Uy7Tyg2W2jrcC1bKqez6uAQAAAAAAuwh8Iem/M3o/v0GrY3tKl76Z92uZ9tQduOFYWKf9dIF2WZP7tUbWj1SwKpj7iYAy5coGZ5KjgW66MQpbeKz8joTpiERsh71spgYAAAAAcBOBLyRJHdHE5rA3g1w3UjPGaMXpZ6h90aK0x+1i41yBkfvq5Yn3pw11glVBXiYNpFCMG5wVQ5ibLcY1AAAAAACKCYEvumm8fpSs2l5J13Kdz2va2zOGvVt83E869JlXFbJCSdc9QcJclCbXumoz1eHyBmdS5kC3mMJcY4w6IpGka7HIps5/M64BAAAAAFBMCHzRjeX35nVG7xa7v/6avMHu4xbCsfbNs3ktaV4oJG+KwBcoRk5vPOaWfG9wtkUxBbrpGGM0K4sZvQAAAAAAFAsCXxSMNxiUN9Q9zPXGxEZsKEnFOCLBjnxvcFaK7M7oZT4vAAAAAKDYEPgCgENMLGE77LUzq9YtpdJ1WyjpZvQynxcAAAAAUGwIfMuAMUYd0dzmgcZyvD+ArjKNSCBkLax083klZvQCAAAAAEoXgW+JM8boyVsWavVH6wtdStbCsXZ5Y91vb+9od78YwGEev09eF2biInvM5wUAAAAAlDMC3xLXEU04GvYOsJapyj/GsfNtyxjT+e/DHzuMWb0oOek2ZTPRuMvVIBk73bt2w15m9AIAAAAASg2Bbxlp/OnBsgI97CiMbpRuGaoqT0Qez3ccrWtr7R2bMh/0XyPrRypYFcxbLUC2SnVTtkqSbfduuvm8EjN6AQAAAAClh8C3jFgBX88DX49P8qbuiMuH57/1vEK9dki5HqwKErSgqNjdlM0/uLc8lteFiiqP0927wd51/JwBAAAAAJQVAl/YZoyRac9tvu7W96/2BRWyQrmWBRREuk3Z2JAtP+jeBQAAAAAgMwJf2GKM0YrTz1D7okWFLgXokXSzd22fY6sZvWzK5r6OSITuXQAAAAAAMiDwhS2mvd3RsPe9QdLOwdSdd4CTmL1bfujeBQAAAAAgOQLfHjLGqD0WT7kejqZeK3W7v/6avMHum6mFY+06/LHDbJ1j+E4jdRLjHOCQTN27Jhp3NOxlRm/hWYFqWdX80QgAAAAAgG0R+PaAMUbfnjFXC1b8p9ClFIQ3GJQ31D2s9cakiH9zR92cCXMUrOoeCm/BhmxwSrbdu+lm79rFjF4AAAAAAFCsCHx7oD0Wtx327j94ewWt0pjzaYxk4h4p3C51dA2zEllu1hasYkM2uMPEErbDXv/g3vLWWIS1AAAAAACgbBH45ujNKeMUStMtGLR8JREuGWO0YnZfta/zS08ckvbYcKxd3lj329s7sguFAadl6t6lMxcAAAAAAJQ7At8chfw+hfzF/2k0xqQNZBMbPt8c9mbw3iBpwu8PkwjNUIQ8fp+8OY5rAAAAAAAAKGXFn1QiZ8YYnf2ns7V47eKUxwSiRg//99/n/sCniJX8uIiljGHvyPqRaef3AgAAAAAAAMgPAt8K0N7Rnjbs3dYLE56Tt65vj6/HhmxwkjFGJpZIvR6Nu1gNcmGMUUck0uP7xyKbHKwGAAAAAIDyROBbYeZMmJO0+zbR+m+1/OwoSVKoKiQvG66hCBhjtHbG27Y3ZUPxMsZo1tTLtPKDZYUuBQAAAACAskbgW+SMMeqIpu5ujEWy624MVgUVShLmJnzhrGsD8s3EErbDXv/g3vJY3jxXhJ7qiEQcC3sHDhuuqkDAkXMBAAAAAFBuCHyLmDFGT96yUKs/Wl/oUoCCGzBlrDxpNmTzWF5GiZSIC+95RFagusf3rwoE+FoDAAAAAJACgW8R64gmbIe9A3arU5Wf7kaUL4/fJ2+awBelwwpUy6rueeALAAAAAABSI/AtEY0/PVhWIHXYVeWnuxGlKd2mbGzIBgAAAAAAkB0C3wLKZj6vFfClDXxtXEyBmJQItythdV9OtLf3/NxAD7EpGwAAAAAAgLMIfPMoXaBrjNHvf7ZQ61raXKnjJw/HtcdnUsvPDs779YAt0nXvSps7eO2EvWzIBgAAAAAAYA+Bb544ueFarvN5Tfsm7fGZvWODfSPyBJmtidxl272bblM2NmQrfsYYdUQiKddjkU0uVgMAAAAAQOUi8M0Tuxuu9W2o1f/78ai0YZaT83kHzXlRNb136L4QDUu3DpXHZwjW4AgTS9gOe/2De8tbY/G9VwCZglpb55DRrGmXa+0nHzlUFQAAAAAA6CkCXxek23DN7c3WPMGgvKFQkkLM5jcgD9J170p08PZUrmFtIYLagcOGqyoQcO16AAAAAABUGgJfF+S84RpQhOzM593C4/fJmybwRXeZwtxi7KrdcciuOvWam+VRmlcsBAKE+wAAAAAA5BGBb08ZyZIUi8QVM93Di1gk3v0++SrFGJn29tTradaAZDKFuTLS2hlvKbZqo3tFVRBjjGZNvUwrP1jmyvXsBLV2EOYCAAAAAFB4BL49YIzR6W1+7RT36ZFLXy94LStOP0PtixYVtA6Uj2w3W8vEP7i3PFbPNx2sRB2RiO2w14mwlqAWAAAAAIDyQeDbAx3RhHaK23t5+oDd6lTlz1/YZdrbbYe97w2Sdg5W560WlI50HbwmGrcd9loDarTjBfsqXdbIfN7uMo1riEU2df77wnsekRVI/f+WsBYAAAAAAGyNwDdHp17/NfWuTb0BkZubsu3++mvyBoPdbg/H2nX4Y4cpYknjCYZKWsZRC7ZOYn8cA5utZc/p2btWoFpWNX+oAQAAAAAA9hD45qjKXzwbsm2qkrxW99sjHiniJ5QrJLeDWif4B/eWt8Yi0M2C07N3Bw4brqpA6j8oAQAAAAAAbIvAt8QZYzr/ffhjhxHsFiGnZ+I6JdM4Brp3s+f07F3GNQAAAAAAgGwR+Ja49o5NmQ/6r5H1IxWs6j7yAfllYglHw147c3PtINDNL2bvAgAAAACAQiDwLSPPf+t5hXrtkHI9WBUkYCqwTDNx7SCoLax0M3q33myN2bsAAAAAAKAQCHzLSLUvqJAVKnQZSMPj98mbY+CLwnF6Ri8AAAAAAIDTvIUuAABKhd0ZvWy2BgAAAAAACoUOXwDogXQzepnPCwAAAAAACoXAFwB6gBm9AAAAAACgGBH4Ag4wxsjEEsnXonGXq0FPpduQTeq6KRsAAAAAAEAxIvAtcsYYmfb21Otp1uAOY4zWznhb0RWthS4FOWBDNgAAAAAAUA4IfIuYMUYrTj9D7YsWFboUpGFiCVthr39wb3ks9kksVnY3ZJPYlA0AAAAAABQvAt8CytS9Gw+HbYe97w2Sdg4yT7TQBkwZK4/fl3TNY3nZyKtEpNuQTWJTNgAAAAAAULwIfAsk2+7dc3/gU8RKvT58p5E6yQo5VB16yuP3yZsi8EXpYEM2AAAAAABQqgh8C8S0t2fVvfv0d+YolCbQDVYF6TgE0mBDNgAAAAAAkC/GGMVisbTHRKNRV2oh8M0jY4zaO5KPbEjEvrx90JwX5QkGux2zKd6uo393tCKWNM8KpQ18AaTGhmwAAAAAAJQfOyGrW3XMnDlTq1evTntcJE0jmpMIfPPEGKOz/3S2Fq9dnHQ9EDV6+L//PuIPRyviT9Gdm+p2AJ3sdO+yIRsAAAAAAOXDGKPm5ma1tLQUupSiQ+CbJ+0d7SnD3myNrB+pYFX3DmAA2XfvsiEbAAAAAAClLxaLFV3Y279/fzU2NqbMFVpbW3XTTTflvQ4CXxfMmTCnW2CbCLer5WcH/3f9ZXlDqQNd5vOikjndvRvsXcf/JwAAAAAAykhTU5P8fn+hy5BlWWkzB7dqJPB1QbAq2G3+bsL68t8hKygv83mBbujeBQAAAACg/Dgxe3frDdD8fn9RBL7FgsAXQNHqiETo3gUAAAAAoIjkGtba3eAMPUfgC6Ak0L0LAAAAAEDPOdFVW4xhbUNDgyzLynxgBSHwBVASrEC1rOrUgS8AAAAAAEjOGKPm5uai2uQs0wZndmWam1uJCHwBAAAAAACAMhaLxRwNe50Iawlq84fAFwAAAAAAAChiuY5j2HqDs6amppw3OCOsLW4EvgAAAAAAAECRcnocg9/vzznwRXHzFroAAAAAAAAAAMk5OY6BDc4qAx2+SRhj1B6Lp1xvj365tqmjXVaSY9s72vNSGwAAAAAAAHKT64gENzk5joFRDJWBwHcbxhh9e8ZcLVjxn5THWMbohwpJko7+/ZHq8EVTHgsAAAAAAIDi4fSIBDcxjgF2MNJhG+2xeNqwV5Lksf8XoJH1IxWsCuZYFQAAAAAAAJzg5IgENzGOAXbR4ZvGm1PGKeT3dbt9w8Y2PTF5oSTp+W/+Sb1qalOeI1gVLI5WeWOkWDj1ejTNGpBHxhh1RCJJ12KRTS5XAwAAAAAoZk6MYnByRIKbGMcAuwh80wj5fQr5u3+KYtEvQ+DqqqBCVsjNsrJnjNQ8XmqZV+hKgC6MMZo19TKt/GBZoUsBAAAAABS5fIxiYEQCyhGBbyWIhe2HvQ1fk4o9wEbZ6IhEbIW9A4cNV1Ug4EJFAAAAAIBCydS9G41GHQ17GZGAckXgW2malkv+NIGuFZJ4eQAK4MJ7HpEVqE66VhUI8LIVAAAAAChx6QJdY4xmzpyp1atX2zqXE6MYGJGAckXgW2n8IclfU+gqUCHSzeeVus7otQLVsqqTB74AAAAAgPxwYiau3etkE+im09DQoJqaGsJaIIWCB7533XWXbrnlFq1evVr77ruvfvGLX2jMmDEpj58+fbruvvtuffrpp+rbt6++/e1v68Ybb1Q1QRFQVJjPCwAAAADFLR8zcXPVv39/NTY2pg1z6cwF0ito4Pvb3/5WkyZN0owZMzR27FhNnz5d48eP1/vvv6/6+vpuxz/66KO64oor1NzcrAMPPFAffPCBvvOd78jj8ei2224rwEcAIBW783klZvQCAAAAQCHEYjHXw95MgS5hLpC7gga+t912m8477zw1NjZKkmbMmKE//vGPam5u1hVXXNHt+L/97W866KCDdPrpp0uShgwZotNOO03z5tnckMw2I3liau9olzy+bqubOtodvh5Q3tLN55WY0QsAAAAAhebETFw7CHSB/CtY4BuNRrVgwQJNnjy58zav16tx48Zp7ty5Se9z4IEH6pFHHtEbb7yhMWPG6KOPPtJzzz2ns846y7G6jDEKDZ4hX2iFDn98atJjquJ+natbHLsmUO6YzwsAAACgHLg179Yt0Wi0899+v9+VwBdA/hUs8F23bp3i8bj69evX5fZ+/frpvffeS3qf008/XevWrdPBBx+8eTOojg5dcMEF+r//+7+U14lEIopstWlUa2tr2ro2xTfJF1ph++MIVgVtHwsAAAAAAIpXukDXyU3HACCfCr5pWzbmzJmjG264Qb/85S81duxYLV++XJdccomuvfZaXXXVVUnvc+ONN+qaa67p0fX+9P9ma4dgbbfbY5G4HnljviTxMgQAAAAAAArMic7bSg50GxoaZFlWocsA4JCCBb59+/aVz+fTmjVruty+Zs0a9e/fP+l9rrrqKp111lk699xzJUl77723Nm7cqPPPP19XXnmlvF5vt/tMnjxZkyZN6ny/tbVVDQ0NtmoMVgUVskLdbo8l4rbu7xpjpFg49Xo0zRqQhDFGHVt1xvdELLLJoWoAAAAAlLNcw1q3g9pMm46VIubqAuWlYIGv3+/X6NGjNXv2bJ100kmSpEQiodmzZ+viiy9Oep9wONwt1PX5Nm+qZoxJep9AIKBAIOBc4fkQDUtVyevPyBhp5tHS6iXO1oSKZYzRrKmXaeUHywpdCgAAAIASlynMLcau2kyBLuEogGJX0JEOkyZN0sSJE7X//vtrzJgxmj59ujZu3KjGxkZJ0tlnn62ddtpJN954oyTp+OOP12233aaRI0d2jnS46qqrdPzxx3cGvyVj64D61qE9D3yz0fA1KUnHMrC1jkjE0bB34LDhqir2P7oAAAAA6KIURyQ41XlLoAug1BU08D3llFO0du1aTZ06VatXr9Z+++2n559/vnMjt08//bRLR++UKVPk8Xg0ZcoUffbZZ9pxxx11/PHH6/rrry/Uh5CWMUamvT3pWqL1c2cv1n9vqfF5Kd0vJSuUfh0VI93Ihq1HMVx4zyOyAtU5XasqEODBEgAAAOAQJ4JYO9dwu+vWibCWoBYANiv4pm0XX3xxyhEOc+bM6fJ+VVWVpk2bpmnTprlQWW6MMVpx+hlqX7Qo88GXvC3V9cntgoS5sCmbkQ1WoFpWdW6BLwAAAABnGGPU3NyslpaWQpeSFTthLmEtADin4IFvuTLt7bbC3mDfiDy9d5D8NS5UBdgf2cAoBgAAAMBdmbp3o9Goq2EvIxIAoDQR+Lpg99dfkzcY7HpjNCzdOlQen+EXX5EzxsjEEqnXo3EXq3FWupENjGIAAAAA3JNt925TU5P8fn9eayKoBYDSRODrAm8wKG9om83Sqow7G7UhrUxhroy0dsZbiq3a6F5RLmJkAwAAAFAcYrGY7bC3oaFBNTU1hLEAgKQIfFGxjDFaO+NtRVe0OnI+/+De8ljezAcCAAAAKClubJQWjUY7/52pe5fOWwBAOgS+qFgmlrAd9loDarTjBftKaR5TeSwvD7oAAACAMlOIjdL8fn/exzUAAMoXgS8gacCUsfL4fSnXCXMBAACAypTNqAUnNDQ0yLIs164HACg/BL6AJI/fJ2+awBcAAAAA2CgNAFAKCHwBAAAAALCBUQsAgFLADlMAAAAAAAAAUCbo8AUAAAAAlBxjjGKxWN6vE41G834NAACcROALAAAAAHBVrmGtMUYzZ87U6tWrHawKAIDyQOCbo0Q4rES8+2Zfifb2AlQDAAAAAIWVKcwt1bC2oaFBlmUVugwAADIi8O0BY0znv/9x0MHyJXiJDwAAAIDyV2xhbv/+/dXY2CiPx5P3a1mW5cp1AADIFYFvD5gsuneDo0bJEwzmsRoAAAAAlc6NebZOh7lOhLWEsAAAdEfgm6PdZr+oQF1tynVPMMgDELjKGKOOSCTleiyyycVqAAAAkG/GGDU3N6ulpaXQpXSyE+YS1gIAkB8EvjnyVgflDYUKXQYgafOD/VlTL9PKD5YVuhQAAAC4JBaLuRr2EuYCAFDcCHyBMtIRidgOewcOG66qQCDPFQEAAMBNTU1N8vv9eb0GYS4AAMWNwBcoUxfe84isQHXK9apAgAfqAAAAZcbv9+c98AUAAMWNwBcoU1agWlZ16sAXAAAAAAAA5cdb6AIAAAAAAAAAAM6gwxcAAAAACsQYo1gsltM5otGoQ9UAAIByQOALAAAAAAVgjFFzc7NaWloKXQoAACgjjHQAAAAAgAKIxWKOhr0NDQ2yLMux8wEAgNJEhy8AAAAA9ECu4xi2HsXQ1NQkv9+fUz2WZcnj8eR0DgAAUPoIfFG2jDEysUTq9WjcxWoAAABQTpwex+D3+3MOfAEAACQCX5QpY4zWznhb0RWthS4FAAAAZcjJcQyMYgAAAE4i8EVZMrGE7bDXP7i3PBbjrAEAANAzuY5jYBQDAABwEoEvyt6AKWPl8ftSrnssLw+wAQAA0GOMYwAAAMWEwBdlz+P3yZsm8AUAAAC2lWlDtq03XAMAACgmBL4AAAAAsBWnN2QDAABwE4EvAAAAgIpip3vXbtjLhmsAAKDYEPiiJBljZGKJ1OvRuIvVAAAAoFhkCnONMZo5c6ZWr15t63yZNmRjwzUAAFBsCHxRcowxWjvjbUVXtBa6FAAAABQRp0cxNDQ0qKamhkAXAACUFAJflBwTS9gOe/2De8tjefNckXuMMeqIRFKuxyKbXKwGAADAWZm6czPJZhRD//791djYmDbMpXsXAACUIgJflLQBU8bK4/elXPdY3rJ5kG6M0aypl2nlB8sKXQoAAEDWnB61kAmjGAAAQKUi8EVJ8/h98qYJfMtJRyRiO+wdOGy4qgKBPFcEAABgj9OjFjJhFAMAAKhkBL5ACbrwnkdkBapTrlcFAjzBAQAARSMWizk6aiETuncBAEAlI/AFSpAVqJZVnTrwBQAAcFOmcQ3RaLTz34xaAAAAyC8CXwAAAAA9lu24Br/fnzbwBQAAQG68hS4AAAAAQOnKZlxDQ0ODLMvKc0UAAACVjQ5fAAAAAI5gXAMAAEDhEfgCAAAAcATjGgAAAAqPkQ4AAAAAAAAAUCYIfAEAAAAAAACgTFTsSIdwtENV0Y4kt8cLUA0AAAAAAAAA5K5iA98x18+WNxDqvuCJqtce7tcDAAAAFCtjjGKxWNK1aDTqcjUAAABIp2IDXzuqq5h4AQAAgMpmjFFzc7NaWloKXQoAAABsqNjA9+VLD1e/vtt3u729o12HPz5VkuTxeNwuCwAAAHBVuu5daXMHr52wt6GhQZZlOVkaAAAAeqBiA9+g36eQP8mH7/G5XwwAAACwlUwhrJPXmTlzplavXm3r+KamJvn9/qRrlmXRMAEAAFAEKjbwRXEzxsjEEsnX2FgPAACUuHSBbrYhrFsaGhpUU1NDqAsAAFDkCHxRdIwxWjvjbUVXtBa6FFcZY9QRiaRcj0U2uVgNAADIl2Kcidu/f381NjamDXPp4AUAACgNBL4oOiaWsBX2+gf3lscqjY31MoW5Rkazpl2utZ985GJVAAAgW06MWrA7E9dOCOsUwlwAAIDyQeAL16Ub1yB1HdkwYMpYefzJ5yp7LG/RPDFJF+g6HeYOHDZcVYGAI+cCAAD25aMzl5m4AAAAcBqBL1yV7bgGj98nb4rAt1gYYzRr6mVa+cGynM+145Bddeo1N8uj1E/uqgIBnvwBAJAHmbp37Xbm2sVMXAAAAOQDgS9cZXdcg1Q6Ixs6IhFbYS9hLgAAhZMpzM12o7R0nbl20cELAACAfCDwRcGkG9cgFdfIBrsuvOcRWYHqpGuEuQAAFIbToxjozAUAAEAxI/BFwZTCuIZsWYFqWdXJA18AAFAYsVjMdthrZ6M0OnMBAABQzAh8AQAAUNQyjWPIJBqNdv470ygGwlwAAACUOgLfZIxRICYlwu1KWN2XE5va3a8JAACgAjk9jsHv9+c8excAAAAoZgS+2zDG6CcPx7XHZ1LLzw5Oekzc65cOvd3lykqDMUYmlki9Ho27WI0zjDHqiERSrscim1ysBgCAypLNOIZMGhoaZFlJ/poPAAAAlBEC322Y9k3a4zP7x3uCwfwVU2Qyhbky0toZbym2aqN7ReWZMUazpl6mlR8sK3QpAABUvEzjGDJhXAMAAAAqAYFvGoPmvKia3jt0uz0WievlyfMlqWKeNBhjtHbG24quaHXkfP7BveWxvI6cK586IhHbYe/AYcNVFQjkuSIAAMpLpvm8W8/fZRwDAAAAkBmBbxqeYFDeUKjb7V5f6Y0lyJWJJWyHvdaAGu14wb5SmizcY3lLLiy/8J5HZAWqU65XBQIl9zEBAJBPmcJcY4xmzpyp1atXu1gVAAAAUN4IfJG1AVPGyuP3pVwvpTA3m/m8VqBaVnXqwBcAAHzJ6c3WmL8LAAAA2EPgi6x5/D550wS+pYL5vAAA5E82m631799fjY2Naf9gzPxdAAAAwB4CX1Qs5vMCAOCOTJutEeYCAAAAziHwRdnKZlwD83kBAMheuhm9bLYGAAAAFAaBL8pStuMamM8LAEB2nJ7RCwAAAMAZBL4oS4xrAAAgN+m6d6XNHbx2wl42WwMAAADcReCLsse4BgAAusoU5hpjNHPmTK1evdrW+dLN6GU+LwAAAOAuAl+UPcY1AADwJadHMTQ0NKimpoZQFwAAACgSBL4AAAAlIlNnrh12RzFIUv/+/dXY2Jg2zKWDFwAAACguBL4AAAAlIB+bpKUbxSAR5gIAAACliMAXAACgBMRiMUfDXkYxAAAAAOWJwBcAAKDEZOrMtYPuXQAAAKA8EfgCAACUGL/fn3PgCwAAAKA8eQtdAAAAAAAAAADAGQS+AAAAAAAAAFAmGOkAAABQJIwxisViSdei0ajL1QAAAAAoRQS+AAAARcAYo+bmZrW0tBS6FAAAAAAljMAXAAAgR+k6c+2KRqO2wt6GhgZZlpXTtQAAAACULwJfAACAHOSjM7epqUl+vz/pmmVZ8ng8jl0LAAAAQHkh8AUAAMhBLBZzNOxtaGhQTU0NoS4AAACAHiHwBQAAcEi6zly76OAFAAAAkAsCXwAAAIf4/f6cA18AAAAAyIW30AUAAAAAAAAAAJxB4AsAAAAAAAAAZYKRDgAAAGkYYxSLxVKuR6NRF6sBAAAAgPQIfAEAAFIwxqi5uVktLS2FLgUAAABAiTPGuHIdAl8AAIAUYrGY7bC3oaFBlmXluSIAAAAAbjPGKJFoz/kcCxac4lBF6RH4AgAA2NDU1CS/359y3bIseTweFysCAAAAypcTIatTdSxYeKra2t7N+VwbNyYcqCgzAl8AAAAb/H5/2sAXAAAAgDM2h6wTtH79wkKXUpIIfAEAAAAAAAAUjUSivejC3tra4Ro9alZOr+prbW2VNMC5olIg8AUAAEXHGKNYLFboMhSNRgtdAgAAAFDRDjl4nny+UKHLkNcbzHmEm8/X4VA16RH4AgCAomKMUXNzs+3N0gAAAACUL58vVBSBbykh8EUnY4xMLPnwaBONu1wNAKBSxWKxogt7GxoaZFlWocsAAAAAgIwIfCFpc9i7dsbbiq5oLXQpAIAi5saoha3HKDQ1NRXFRmmWZeX88i0AAAAAcAOBLyRJJpawFfb6B/eWx/K6UBEAoNgUYtSC3+8visAXAAAAAEoFgS+6GTBlrDx+X9I1j+WlwwkAKpTboxYYowAAAAAA2SPwRTcev0/eFIEvAKA0OTGKwe1RC4xRAAAAAFBOjDGuXIfAFwCAMpePUQyMWgAAAACALxljFE4k0hwgnbhwuSu15DSMddOmTTkXcNddd2nIkCGqrq7W2LFj9cYbb6Q9/osvvtBFF12kAQMGKBAI6Ctf+Yqee+65nOsAAKBcOT2KgVELAAAAAHJhjFE8Hk77VkqMMTph4XLt9sqS1G+vLtG7G9tdqSfrDt9EIqHrr79eM2bM0Jo1a/TBBx9o11131VVXXaUhQ4bonHPOsX2u3/72t5o0aZJmzJihsWPHavr06Ro/frzef/991dfXdzs+Go3qG9/4hurr6/XEE09op5120ooVK7Tddttl+2EAAFCRnBjFwKgFAAAAAD1ljNGChRO0fv3CQpfimHAiofmtGwtdRqesA9/rrrtODz74oH7605/qvPPO67x9xIgRmj59elaB72233abzzjtPjY2NkqQZM2boj3/8o5qbm3XFFVd0O765uVmff/65/va3v3V2Fg0ZMiTbDwEAgJKS6/zdrWfvMooBAAAAQL4ZY5RIJO9mjcfDtsPeurrR8nqDTpaWd0sO2kshX/KhCq2trRroQg1ZB74PPfSQ7rnnHh155JG64IILOm/fd9999d5779k+TzQa1YIFCzR58uTO27xer8aNG6e5c+cmvc8zzzyjAw44QBdddJGefvpp7bjjjjr99NN1+eWXy+djkzEAQPnJx/xdAAAAAMiXbDp4Dzl4nny+UMp1rzdYcq8uDPm8qkmRU8Zdyi+zDnw/++wzDR06tNvtiUQiq+6jdevWKR6Pq1+/fl1u79evX8rg+KOPPtJf/vIXnXHGGXruuee0fPlyfe9731MsFtO0adOS3icSiSgSiXS+39raartGAAAKzcn5u8zeBQAAAJBviUS7rbC3rm60LKtPyQW6pSDrwHf48OF69dVXNXjw4C63P/HEExo5cqRjhSWTSCRUX1+ve+65Rz6fT6NHj9Znn32mW265JWXge+ONN+qaa67Ja10pGSPFUgyZjpbW8GkAQH5kGtew9TiGXOfvMnsXAAAAQDrpRjHYtfWGa+k6eEuxe7dUZB34Tp06VRMnTtRnn32mRCKhJ598Uu+//74eeughPfvss7bP07dvX/l8Pq1Zs6bL7WvWrFH//v2T3mfAgAGyLKvL+IY999xTq1evVjQaTfokePLkyZo0aVLn+62trWpoaLBdZ48ZIzWPl1rm5f9aAICSlO24BubvAgAAAJXJiSDWzjUWLDxVbW3vOnZOny+UdmQD8iPrwPfEE0/UH/7wB/3kJz9RTU2Npk6dqlGjRukPf/iDvvGNb9g+j9/v1+jRozV79myddNJJkjZ38M6ePVsXX3xx0vscdNBBevTRR5VIJOT1bh5+/MEHH2jAgAEpnwAHAgEFAoHsPkgnxML2wt6Gr0kW3/gAUImyGdfAOAYAAACgMmUzE7eYlOKGa+Ui68BXkg455BC9+OKLOV980qRJmjhxovbff3+NGTNG06dP18aNG9XY2ChJOvvss7XTTjvpxhtvlCRdeOGFuvPOO3XJJZfo+9//vv7xj3/ohhtu0A9+8IOca8mrpuWSP0Woa4Uk2tcBoCw5Oa6BcQwAAABAZbI7E9cptbXDNXrUrJyffzCyoXCyDnx33XVXzZ8/X3369Oly+xdffKFRo0bpo48+sn2uU045RWvXrtXUqVO1evVq7bfffnr++ec7N3L79NNPOzt5pc3dTS+88IJ+9KMfaZ999tFOO+2kSy65RJdffnm2H4a7/CHJX1PQEowxMrFE6vVo3MVqAKCwMgWxTl1j5syZWr16ta3jGdcAAAAAVKZM4xrszsR1CkFt6cs68P3kk08Uj3cPByORiD777LOsC7j44otTjnCYM2dOt9sOOOAA/f3vf8/6OpXMGKO1M95WdEVroUsBgILLdm6uGxjXAAAAAFSmbMc1MBMXdtgOfJ955pnOf7/wwguqq6vrfD8ej2v27NkaMmSIo8XBGSaWsB32+gf3lsfyZj4QAEpUNnNzndC/f381Njam/Qs54xoAAACA0uPERmrxeNh22MtM3PwwxiicSP2qeDvC8dzu7zTbge+WjdU8Ho8mTpzYZc2yLA0ZMkQ/+9nPHC0OzhswZaw8fl/KdY/lJXQAUDEyzc11AmEuAAAAUHoyhbmbO3NPVVvbu45dM9O4BkYtOM8YoxMWLtf81o2FLsVRtgPfxH+T7l122UXz589X375981YU8sfj98mbJvAFgErC3FwAAAAA28p2zIIT6upGy7L6EOhmKdfu3HA84WjYO6auRiFv4V85n/UM348//jgfdQAA4IhMG7JFo1EXqwEAAABQjNJ18GYzZqG2drhGj5qVc1BL9272nO7OXXLQXgr5cgtrQ97ieOV81oGvJG3cuFEvv/yyPv30025PnH/wgx84UhgAANvKFOYaYzRz5kytXr3axaoAAAAAuMWJubnZjGNgzELhZOredbI7d0xdjfpaVWXztcw68F20aJGOPfZYhcNhbdy4UTvssIPWrVunUCik+vp6Al8AQI+4HeY2NDTIsixHzgUAAAAgd4WYm5sOYxYKJ9vu3Vy7c4ulM9cpWQe+P/rRj3T88cdrxowZqqur09///ndZlqUzzzxTl1xyST5qBACUOWOMmpub1dLS4sj5+vfvr8bGxrS/sNlMDQAAAHBXukDX7TBXyjyOge7dwgkn7Hfvllt3rhOyDnwXL16sX/3qV/J6vfL5fIpEItp1113105/+VBMnTtQ3v/nNfNTpuEQ4rES4utvtpj23lwUAQCXK1J2bSTQatR32EuYCAAAApcfJjdCYm1tZMnXvllt3rhOyDnwty5L3v7vN1dfX69NPP9Wee+6puro6xzqz3PDZkV/Xep+v0GUAQMlzuju3qalJfr8/5TphLgAAAFB6Eol2W2GvnTCXoLayhHxe1ZDhZSXrwHfkyJGaP3++dt99dx122GGaOnWq1q1bp4cfflgjRozIR40F8d4gaedg9w5gAKg0mbp3s+nOzaShoUE1NTU8eAMAAABc4sQmaHbE4+HOf6fbCI0wF8hd1oHvDTfcoA0bNkiSrr/+ep199tm68MILtfvuu+v+++93vMB8GfjH5zRg0MBut4dj7Tr8scMUsaTx/IABUOGy7d7N1J2bCd27AAAAgHucHLOQDZ8vlDLwBZC7rAPf/fffv/Pf9fX1ev755x0tyC2e6mp5Q91/uHhjUsRP2AAAkhSLxWyHvXTnAgAAAKXF7pgFJ9XVjZbXG3T1mkClyTrwTWXhwoWaOnWqnn32WadOCQAoIszWBQAAAEpLpnENdscsOImRDUD+ZRX4vvDCC3rxxRfl9/t17rnnatddd9V7772nK664Qn/4wx80fvz4fNUJACgwv9+f07gGAAAAAPblOlt387iGU9XW9q6t4xmzADcZYxROJFKuh+Op15CZ7cD3/vvv13nnnacddthB//nPf3Tffffptttu0/e//32dcsopWrp0qfbcc8981goAAAAAAFDyMoW52Ya1uWLMAtxkjNEJC5drfuvGQpdStmwHvnfccYduvvlmXXrppfrd736nk08+Wb/85S+1ZMkSDRo0KJ81AgAAAAAAlAW3N0qrrR2u0aNmpR2jwJgFuCmcSNgOe8fU1Sjk9ea5ovJjO/D98MMPdfLJJ0uSvvnNb6qqqkq33HILYS8AAAAAAIBN2WyUZieszYQwF07LNI4hk63HNSw5aC+FfKkD3ZDXy/dvD9gOfNvb2xUKbZ7l4vF4FAgENGDAgLwVBvuMMTKx1P/RTDTuYjUASokxRrFYLOV6NBp1sRoAAACgsmTaKI2wFsXG6XEMIZ9XNT6fI+fCl7LatO2+++5TbW2tJKmjo0MPPPCA+vbt2+WYH/zgB85Vh4yMMVo7421FV7QWuhQAJcYYo+bmZrW0tBS6FAAAAKAisVEaSk024xgyYVxD/tgOfHfeeWfde++9ne/3799fDz/8cJdjPB4Pga/LTCxhO+z1D+4tj8V/JACbxWIx22FvQ0ODLMvKc0UAAAAAgELKNK4hm3EMmTCuIX9sB76ffPJJHsuAEwZMGSuPP3UbvMfiPxKA5JqamuT3+1OuW5bFzw8AAADABmOMEon2lOvxeNjFagD7sh3XwDiG4pXVSAcUN4/fJ2+awBcAUvH7/WkDXwAAAACZGWO0YOEE25uyAU7JdSM1aXP3rt2wl3EMxY3AFyXJGKOOSCTleiyyycVqAAAAAACQEol222FvXd1oeb3BPFeEUpBzWGukExct19K21J3l2co0roFxDMWNwBclxxijWVMv08oPlhW6FAAAAABAGck0jiGTrcc1HHLwvLQbsnm9QQIzZD1GwQ1j6mrU16ri+7OEEfiiKKXr4I1FNtkOewcOG66qQMDJ0gAAAAAAJShTmLt5HMOpamt715Hr+XyhtIEvSp/bYxQyGVEb1NMjh0o55rR075Y+Al8UnWw6eC+85xFZgeqU61WBAD+kAAAAAKDCuT1bl3ENxa8UxyhkQlCLLXoU+H744YeaOXOmPvzwQ91xxx2qr6/Xn/70J+28887aa6+9nK6xohljZGKpfwCZaNzFatzREYnYCnsHDhuuYO86fpgBAAAAANLKZrZube1wjR41K6fnmoxryB8numrzEdbmijEKcFLWge/LL7+sY445RgcddJBeeeUVXX/99aqvr9dbb72l+++/X0888UQ+6qxIxhitnfG2oitaC11KwaTr4KV7FwAAAACQLWbrlq5inHfLGAUUo6wD3yuuuELXXXedJk2apF69enXe/vWvf1133nmno8VVOhNL2A57/YN7y2P1vO2/WFmBalnVqUc2AAAAAACQDWbrlq5wwrl5t5IzYS1BLYpR1oHvkiVL9Oijj3a7vb6+XuvWrXOkKHQ3YMpYefy+lOseix8wAAAAAACgMBwZtZBBOP7l+XOddysR1qJ8ZR34brfddlq1apV22WWXLrcvWrRIO+20k2OFoSuP3ydvmsAXAAAAAACgEAoxaiHk86rGR04CJJN14Hvqqafq8ssv1+OPPy6Px6NEIqHXX39dTU1NOvvss/NRIwCgB4wxisViKdej0aiL1QAAAAAoRk505objzo5ayGRMXY1C3vIbawk4JevA94YbbtBFF12khoYGxeNxDR8+XPF4XKeffrqmTJmSjxoBAFkyxqi5uVktLS2FLgUAAADIO2OMEon2lOvxeNjFakpHPjpznRi1kAmjGID0sg58/X6/7r33Xl111VVaunSp2traNHLkSO2+++75qA8Ayk6mzlsnRKNR22FvQ0ODLMvKaz0AAABAvhhjtGDhBK1fv7DQpZQcpzdBG1NXo75WFWEsUGBZB76vvfaaDj74YO28887aeeed81ETAJStQnTeNjU1ye/3p1y3LIsHZAAAAOgiU8dsMYnHw7bD3rq60fJ6g3muqHhkGtfAJmhAeco68P3617+unXbaSaeddprOPPNMDR8+PB91AUBZisViroa9DQ0Nqqmp4UEXAAAAbCvljtlDDp4nny+Uct3rDZbVY+O0ga6RTly0XEvb7AX3bIIGlI+sA9+VK1dq1qxZ+s1vfqObbrpJ++yzj8444wyddtppGjRoUD5qBICylKnz1gl07wIAACBbiUR7SYa9dXWjZVl9Kubxr5Pzd9kEDSgvWQe+ffv21cUXX6yLL75YH3/8sR599FE9+OCDmjx5sg499FD95S9/yUedAFB2/H5/3gNfAAAAlBc3Ri1svcFZpo7ZYlJu3buZ2J2/O6I2qKdHDpXSfGoYxQCUl6wD363tsssuuuKKK7Tvvvvqqquu0ssvv+xUXQAAAAAAVJRMYe7mUQunqq3tXddq8vlCJRP4lpJMs3XtsDt/lzAXqDw9Dnxff/11/frXv9YTTzyhTZs26cQTT9SNN97oZG0AAAAAAJSFYgxzM6m0Dc7c4uQohi2Yvwtga1kHvpMnT9asWbO0cuVKfeMb39Add9yhE088UaEQf/GDPcYYdUQiKddjkU0uVgMAAAAA+eX0Jmi1tcM1etSsvHdtVtqIBKdk6t4Nx+2NYrCL+bsAtpV14PvKK6/o0ksv1YQJE9S3b9981IQyZozRrKmXaeUHywpdCpAXxhjFYrGU69Fo1MVqAAAA4JZ0HbzxeNh22GsnzCWILV7Zdu+mG8VgFyMbAGwr68D39ddfz0cdqBAdkYjtsHfgsOGqCgTyXBGQnXSBrjFGM2fO1OrVq12uCgAAAMm4scHZluvYHceQaRM0wtzi5mT37pi6GvW1qvh6A3CcrcD3mWee0THHHCPLsvTMM8+kPfaEE05wpLB8iyQiCsfC3W5v78j/gwFsduE9j8gKVKdcrwoE+MUHV2XqznUy0G1oaJBlWTmfBwAAAMk5PUbBCXV1o2VZfXieUyA5b5RmpBMXLdfSNnu5QabuXTpzAeSLrcD3pJNO0urVq1VfX6+TTjop5XEej0fxeNyp2vLqm8/8jzrqerxnHRxgBaplVacOfAE3GWPU3NyslpaWnM/Vv39/NTY2pn3wZlkWD+4AAADyKJFodz3szTSOge7d/MkY5mYZ1uaK7l0AhWQr8Uxs9UMzkctfw0rIyPqRClaxGylQKWKxmO2wN1OgS5gLAABQXDKNUXAKgW5hZDs3N1cjaoN6euRQKc2Xmu5dAIWUdYvrQw89pFNOOUWBbWarRqNRzZo1S2effbZjxeXTr499XEMG75pyPVjFL2qgUjU1Ncnv96dcJ9AFAAAoLT5fyJXAF4URTtifm2snrM2EMBdAscs68G1sbNTRRx+t+vr6Lrdv2LBBjY2NJRP4BquCCln8wgfQnd/vTxv4AgAAAChOzM0FgB4EvsaYpD8c//nPf6qurs6RogAAAAAAALIV8nlV4/MVugwAKCjbge/IkSPl8Xjk8Xh05JFHqqrqy7vG43F9/PHHOvroo/NSJAAAAAAAAAAgM9uB70knnSRJWrx4scaPH6/a2trONb/fryFDhuhb3/qW4wUCgBOMMYrFYinXo9Goi9UAAAAAsMsYo3CaDeTD8crYXB4A7LId+E6bNk2SNGTIEJ1yyimqrq7OW1EA4CRjjJqbm9XS0lLoUgAAAABsI22ga6QTFy3X0rZ2d4sCgBKW9QzfiRMn5qOOomKMUUc09V8IY5G4i9UAyFUsFrMd9jY0NMiyrDxXBAAAAEDa/Pz7hIXLNb91Y87nGlNXo5A39YZtAFApbAW+O+ywgz744AP17dtX22+/fdodLT///HPHiisEY4yevGWhVn+0vtClAMiDpqYm+f3+lOuWZbFrLwAAQAkwxiiRSN31GY+HXaymMmUatWBHOJ6wFfaOqA3q6ZFDpTQP1UNeL4/lAUA2A9/bb79dvXr16vx3Of8A7YgmbIe9A3atVZXapWiSz0eUBxeAW7KZz+v3+9MGvgAAACgO6QJdY4wWLDxVbW3vulwVtnCyM3eLJQftpZAveYcuYS4A2Gcr8N16jMN3vvOdfNVSdBp/erCsgK/7gjHSQyeq6rPX5LnR/boAfIn5vAAAAOVnc6A7QevXL8z5XHV1o+X1Bh2oClsLJ+x15to1pq5Gfa0qQl0AcEDWM3wXLlwoy7K09957S5KefvppzZw5U8OHD9fVV19dVp1zVsCXPPCNbpRWvpb2pSSdGr4mWSHHawOwGfN5AQAAyk8i0W4r7K2tHa7Ro2alDQm93iAhYp6l68y1iw5eAHBO1oHv//7v/+qKK67Q3nvvrY8++kinnHKKvvnNb+rxxx9XOBzW9OnT81BmEWtaLvnTBLpWSOKXFpBSpnEMmWw9roH5vAAAAOXnkIPnyedL/pyLMLc4hHxe1fiSNEsBAAoi68D3gw8+0H777SdJevzxx3XYYYfp0Ucf1euvv65TTz218gJff0jy1xS6CqAkOT2Ogfm8AAAA+ZVpozSnbL3hms8XShn4In8ybcgWjue2WRsAIH+yDnw3/4Lf/IP9pZde0v/8z/9I2vxS6XXr1jlbHYCyls04hkwY1wAAAJCbTGEuG6VVjnxsyAYAcE/Wge/++++v6667TuPGjdPLL7+su+++W5L08ccfq1+/fo4XCKB0ZRrXkM04hkwY1wAAAJBeukC3WMNcNlwrjGw2ZBtTV6OQN7f5vQAAZ2Ud+E6fPl1nnHGGnnrqKV155ZUaOnSoJOmJJ57QgQce6HiBAIpTpjDXGKOZM2dq9erVts7HOAYAAICec7M7185GaU5hRm9+ZDOuIdOGbGy2BgDFJ+vAd5999tGSJUu63X7LLbfIx5B2oCI4PXuXcQwAAKBSOTET1+0wlxC2tGU7roEN2QCg9GQd+G6xYMECLVu2TJI0fPhwjRo1yrGiABS3bGbv9u/fX42NjWmfFDCOAQAAlKtiG6OQKdAlzC1/jGsAgPKXdeD7r3/9S6eccopefvllbbfddpKkL774QkcccYRmzZqlHXfc0ekaARSxTLN3CXMBAECl2hzoTtD69QtduR7ducgW4xoAoDxlHfh+//vfV1tbm9555x3tueeekqR3331XEydO1A9+8AP95je/cbxIAMWL2bsAAADJJRLttsJep2biEuZii3Qzereez8u4BgAoT1kHvs8//7xeeumlzrBX2jzS4a677tJRRx3laHEAAAAAUA4OOXiefL5Q0jWCWjgp2xm9AIDyk3Xgm0gkkm6uZFmWEml2+QQAAACAcpJpw7V4PNz5b58vlDLwBZxkd0Yv83kBoHxlHfh+/etf1yWXXKLf/OY3GjhwoCTps88+049+9CMdeeSRjhcIwH3GGMVisZTr0WjUxWoAAACclSmotXsOtzdcA7KVbkYv83kBoHxlHfjeeeedOuGEEzRkyBA1NDRIklpaWjRixAg98sgjjheYLx3RhGKReLfbk90GVBJjjJqbm9XS0lLoUgAAABzn9kZqklRXN1peb9C16wFbMKMXACpT1oFvQ0ODFi5cqNmzZ2vZsmWSpD333FPjxo1zvLh8evqm9xT0E2ihMqXr4I1Go7bD3oaGhqQjXgAAAArFzpgFJ8NeOxuuMaMXAAC4KavA97e//a2eeeYZRaNRHXnkkfr+97+fr7oKbsBudaryM88I7sk0RsHJ68ycOVOrV6/OeGxTU5P8fn/KdcuyePICAABclS7QzXbMQrqN1OwizIXbjDEKp9k/Jxxnbx0AqHS2A9+7775bF110kXbffXcFg0E9+eST+vDDD3XLLbfks768OW7SVzR096Ep16v8zDOCczKFudmEsG5paGhQTU0N/w8AAEDRcHIcQ13daFlWHx7roKQYY3TCwuW2NmUDAFQu24HvnXfeqWnTpmnatGmSpEceeUT/+7//W7KBb5XfKyvALCOnGWPUEYmkXI9FNrlYTXEo1pm4/fv3V2NjY8onOXTvAgAAJzmxUZrdcQyMWUAxytSZa0c4nrAd9o6pq1HIy6tWAaAS2Q58P/roI02cOLHz/dNPP13nnHOOVq1apQEDBuSlOJQWY4xmTb1MKz9YVuhSikosFrMd9mYKYZ1EoAsAANySj43S0o1jIMxFsclHZ+6Sg/ZSyJc60A15edUqAFQq24FvJBJRTU1N5/ter1d+v1/t7bn9lR7loyMSsR32Dhw2XFWBQJ4rKj7MxAUAAJUokWh3NOxlHAOKUboO3mw6c+0YU1ejvlYV/wcAAElltWnbVVddpVDoy7+iR6NRXX/99aqrq+u87bbbbnOuOpSsC+95RFagOuV6VSBQkQ9O/H5/2sAXAACg3LFRGkpRxnEMRjpx0XItbcvcEJWpM9cOuncBAOnYDnwPPfRQvf/++11uO/DAA/XRRx91vs8vHGxhBaplVacOfAEAAFA6cp2/G4+HO//t84VyDnwBNzk5joHOXACAG2wHvnPmzMljGQAAAACy4cQmaHavs2DhqWprezfv1wKKUThhfxzDiNqgnh45VEqR59KZCwBwQ1YjHQAAAAAUXj42QXNDXd1oeb3BQpcB9BgbpQEASgGBLwAAAOAyJ0YkuB321tYO1+hRs3IKs5i9C7dlnL1rQzj+5f1DPq9qfL5cywIAIK8IfAEHGGMUi8WSrkWjUZerAQAAxczp7lwnNkGzg7AWpcbJ2bsAAJQSAl8gR8YYNTc3q6WlpdClAACAIpCpe9fJ7ty6utGyrD4EsUAS2czetWNMXY1C3tTjHAAAKBYEvkCOYrGYrbC3oaFBlmW5UBEAACiUbLt3c+3OpesWsCfT7F07mM8LACgVPQp8X331Vf3qV7/Shx9+qCeeeEI77bSTHn74Ye2yyy46+OCDna4RKBlNTU3y+/1J1yzL4gEiAABFLNe5ulJ23bt05wLuYfYuAKCSZB34/u53v9NZZ52lM844Q4sWLVIkEpEkrV+/XjfccIOee+45x4sESoXf708Z+AIAgOLl9FxdKXP3Lt25AAAAyIesA9/rrrtOM2bM0Nlnn61Zs2Z13n7QQQfpuuuuc7Q4AAAAwA2JRLujYS/du0B6xhiFE4m8XiMcz+/5AQAoVlkHvu+//74OPfTQbrfX1dXpiy++cKImAAAAoGBynasr0b0LpGOM0QkLlzu6oRoAAPhS1oFv//79tXz5cg0ZMqTL7a+99pp23XVXp+oCAAAACsLnC+Uc+AJILZxIuBr2jqmrUcib24ZtAACUkqwD3/POO0+XXHKJmpub5fF4tHLlSs2dO1dNTU266qqr8lEjioQxRh3/ndmcTCyyycVqAAAAAJS6JQftpZAvv2FsyOul4x4AUFGyDnyvuOIKJRIJHXnkkQqHwzr00EMVCATU1NSk73//+/moEUXAGKNZUy/Tyg+WFboUAACArBljlEi0p1yPx8MuVgOUt0zzebeerRvyeVXj87lRFgAAFSPrwNfj8ejKK6/UpZdequXLl6utrU3Dhw9XbW1tPuora8YYmVjqB0ImGnexmvQ6IhHbYe/AYcNVFQjkuSL3GGMUi8VSrkejURerAQAA2TLGaMHCCY5uygaUI0c2UjPSiYuWa2lb6j+wAACA/Mo68N3C7/dr+PDhTtZSUYwxWjvjbUVXtBa6lKxdeM8jsgLVKderAoGyecmUMUbNzc1qaWkpdCkAAKCHEol222FvXd1oeb3BPFcEFJ9CbKTGbF0AAPIj68D3iCOOSBvm/eUvf8mpoEphYgnbYa9/cG95rOJ5IGQFqmVVpw58y0ksFrMd9jY0NMiyrDxXBABAeck0asEJW49rOOTgeWk3ZPN6g2Xzh2tgW+k6eMNxZzdSG1Eb1NMjh0pp/jsxWxcAgPzIOvDdb7/9urwfi8W0ePFiLV26VBMnTnSqrrKQbmTD1uMaBkwZK48/9dwqj8UDoXzJZlxDU1OT/H5/ymMty+LrBABAFgoxasHnC6UNfIFylU0HrxMbqRHmAgBQOFkHvrfffnvS26+++mq1tbXlXFC5yGZkg8fvkzdN4Iv8yHZcg9/vTxv4AgCA7GQzasEJjGtAJQsn7HXwjqmrUV+rirAWAIAS1uMZvts688wzNWbMGN16661OnbJwjJFiaXZqjmbexdnuyIZiG9dQTux07zKuAQCAnst1HEM2oxacwLgGYLN0Hbx05gIAUPocC3znzp2r6nKY62qM1Dxeapnn2CnTjWxgXEN+ZNu9y7gGAACy4/Q4BkYtAO4J+byq8fEKQwAAylXWge83v/nNLu8bY7Rq1Sq9+eabuuqqqxwrrGBiYfthb8PXJCvzExNGNrgv283WampqCHQBAMiCk+MYGLUAAAAAOCfrwLeurq7L+16vV8OGDdNPfvITHXXUUY4VVhSalkv+NIGuFZIICYse3bsAAORXruMYGLUA5M4Yo3Ai+YbRkhSOp14DAADlJavANx6Pq7GxUXvvvbe23377fNVUPPwhyV9T6CqQIzZbAwAgvxjHABSWMUYnLFxua1M2AABQ/rLaLczn8+moo47SF1984WgRd911l4YMGaLq6mqNHTtWb7zxhq37zZo1Sx6PRyeddJKj9QAAAFQ6Y4zi8XDaNwDFIZxI2A57x9TVKORl02gAAMpZ1iMdRowYoY8++ki77LKLIwX89re/1aRJkzRjxgyNHTtW06dP1/jx4/X++++rvr4+5f0++eQTNTU16ZBDDnGkDgAAAGzm9IZsANyz5KC9FPKlDnRDXjaNBgCg3GX9p93rrrtOTU1NevbZZ7Vq1Sq1trZ2ecvWbbfdpvPOO0+NjY0aPny4ZsyYoVAopObm5pT3icfjOuOMM3TNNddo1113zfqaAAAAlSxT924s9m/bYS8brgHFJeTzqsbnS/lG2AsAQPmz3eH7k5/8RD/+8Y917LHHSpJOOOGELg8WjDHyeDyKx+O2Lx6NRrVgwQJNnjy58zav16tx48Zp7ty5aWupr6/XOeeco1dffdX29QAAACpdtt27mTZkY8M1IL1Mm6k5gQ3ZAADA1mwHvtdcc40uuOAC/fWvf3Xs4uvWrVM8Hle/fv263N6vXz+99957Se/z2muv6f7779fixYttXSMSiSgSiXS+35MuZAAAgHKRSLRn1b1rWX0IdIEUMoa5Rjpx0XItbWt3rygAAFDxbAe+xhhJ0mGHHZa3YjLZsGGDzjrrLN17773q27evrfvceOONuuaaa/JcGQAAqGTGGCUSpRHobL3ZGt27QM8ZY3TCwuW2N0tzAxuyAQAAKctN25x+wN+3b1/5fD6tWbOmy+1r1qxR//79ux3/4Ycf6pNPPtHxxx/feVviv39Rr6qq0vvvv6/ddtuty30mT56sSZMmdb7f2tqqhoYGJz8MFIAxRrFYLOV6NBp1sRoAQCUr5Q3OfL5Q2sAXqGSZunfD8YTtsHdEbVBPjxwq5fnvJ2zIBgAApCwD36985SsZH0B8/vnnts/n9/s1evRozZ49WyeddJKkzQHu7NmzdfHFF3c7fo899tCSJUu63DZlyhRt2LBBd9xxR9IgNxAIKBAI2K4Jxc8Yo+bmZrW0tBS6FABAiXOiMzceD5dk2MtmayhXjszMzXIUw5KD9lLIl7qzliAWAAC4KavA95prrlFdXZ2jBUyaNEkTJ07U/vvvrzFjxmj69OnauHGjGhsbJUlnn322dtppJ914442qrq7WiBEjutx/u+22k6Rut6N8xWIx22FvQ0ODLMvKc0UAgFKUj87cTCMSignjGlCOCjFmYUxdjfpaVfx/AgAARSOrwPfUU09VfX29owWccsopWrt2raZOnarVq1drv/320/PPP9+5kdunn34qL3OokEJTU5P8fn/KdcuyePANAEgqm83L7GCDM6Dwwgn7YxbssDOKge5dAABQbGwHvvl8EHPxxRcnHeEgSXPmzEl73wceeMD5glAy/H5/2sAXAAA7nOjMpWMWKC6ZxizYQZgLAABKke3A1xiTzzoAAAAKhs3LgPIT8nlV4/MVugwAAADX2Q58E7lufAAAAAAAAAAAyCuG4wIAAAAAAABAmSDwBQAAAAAAAIAyQeALAAAAAAAAAGXC9gxflD9jjDoikaRrscgml6sBACB3xhglEu1J1+LxsMvVAHCCMUbhFPuLhOPsOwIAAEDgC0mbHzjPmnqZVn6wrNClAADKXLoQ1unrLFh4qtra3s37tQC4wxijExYu1/zWjYUuBQAAoGgR+EKS1BGJ2Ap7Bw4brqpAwIWKAADlaHMIO0Hr1y8sdCmd6upGy+sNFroMoOyl68y1KxxP2Ap7x9TVKORleh0AAKhMBL7o5sJ7HpEVqE66VhUIyOPxuFwRAKBcJBLtroe9tbXDNXrUrJS/v7zeIL/bgDzLR2fukoP2UsiXPNQNeb38vwYAABWLwBfdWIFqWdXJA18AAJxyyMHz5POF8n4dAl2g8MIJe525do2pq1Ffq4r/2wAAAEkQ+AIAgILw+UKuBL4Aiku6zly76OAFAABIjcAXAAA4Kt2mbPF42OVqABSbkM+rGp+v0GUAAACULQLfCmGMUUckknI9FtnkYjUAgHJVjJuyAQAAAEAlIfCtAMYYzZp6mVZ+sKzQpdhmjFEsFku6Fo1GXa4GAGCX3U3Z6upGy+sNulARADcYYxROJFKuh+Op1wAAAOAsAt8K0BGJ2A57Bw4brqpAIM8VpWeMUXNzs1paWgpaBwCgu3TjGqSuIxvSbcrGRmpA8cgU1mY+gXTiouVa2pb6ZwMAAADcQ+BbYS685xFZgeqU61WBQMGfgMdiMVthb0NDgyzLcqEiAICU/bgGNmUD8ivnoFZyPawdU1ejkDe3DdsAAACQHoFvhbEC1bKqUwe+xaapqUl+vz/pmmVZBQ+nAaCS2B3XIDGyAcg3Y4xOWLhc81s3FrqUTiNqg3p65FApzcOzkNfL4zcAAIA8I/BFUfP7/SkDXwBA4aQb1yAxsgHIlZ2ZuE6GvXbC2kwIcwEAAIoDgS8AAMga4xqA/Mm2e3fJQXsp5MttTAJhLQAAQPkg8IXrjDGKxWIp16PRqIvVAAC2yGZDNgD5E07Y794dU1ejvlYVYS0AAAA6EfjCVcYYNTc329qUDQDgnExh7uYN2U5VW9u7LlYFlB5HNkrLIBz/8vyZunfpzAUAAMC2CHzhqlgsZjvsbWhokGVZea4IAEqf22EuG7KhFDkS1BrpxEXLtbQt9f83p4V8XtX4fK5dDwAAAKWPwBcF09TUlHZDNsuy6FgBgAw2h7kTtH79QkfOV1s7XKNHzUr785cN2eC2nMPaAgS1ThhTV6OQN7fZvAAAAKg8BL4oGL/fnzbwBQBklki02w57CXPhtlLtqs1kRG1QT48cKuX5vwrjGgAAANATBL4AAJSJQw6eJ58vlHKdMBduMsbohIXLbW8+5ganglqCWAAAABQzAl8AAMqEzxdKG/gCbgonEo6GvU6EtQS1AAAAqAQEvj1kjJGJpX6JoonGXawGAFDO0m3KFo+HXa4G+FK6kQ3h+Je3LzloL4V8uc2iJawFAAAA7CHw7QFjjNbOeFvRFa2FLgUAUOac3pQNcEo2IxtCPq9qfD4XqgIAAABA4NsDJpawHfb6B/eWx2J3ZQAoNem6at0Uj4dthb11daPl9QZdqAjFzpGN0mwIx+2NbBhTV6OQl8dCAAAAgFsIfHM0YMpYefypO1Y8Fi8/BIBSU6xdtek2ZWNDNkiF2ygt3cgGRjEAAAAA7iLwzZHH75M3TeALACg9iUR70YW9dXWjZVl9CM6QltMbpdkxpq5Gfa0qvjcBAACAIkHgCwBAGum6at1EBy+kzOManN4ozQ46eAEAAIDiQuALACgrTszejcfDnf/2+UJFEfgC2Y5rYKM0AAAAoDIR+AIAykaxzt4FnJDNuAY2SgMAAAAqF4EvAKBkZOrejcfDjoa9dXWj5fUGHTsf4JRM4xoYswAAAABULgJfAEBJyLZ714nZu8zNRbFiXAMAAACAVAh8AQAlIZFotx321tWNlmX1IawFAAAAAFQcAl8AQMnJ1L1LZy4AAAAAoFIR+AIASo7PF8p5XANQjIwxCicSSdfC8eS3AwAAAMDWCHwBAEXBzoZsQDkzxuiEhcs1v3VjoUsBAAAAUMIIfAEABZfthmxAsUnXmWtXOJ6wFfaOqatRyOvN6VoAAAAAyheBLwCg4LLdkM3rDea5IlQKJ4JaGenERcu1tC11h3q2lhy0l0K+5KFuyOtlRjUAAACAlAh8AQBFhQ3Z4JZiHaEwpq5Gfa0qvs8BAAAA9AiBbxkwxqgjEkm5HotscrEaAEgu3YzerefzsiEb3BJO2BuhYNeI2qCeHjlUyjGnpYMXAAAAQC4IfEucMUazpl6mlR8sK3QpAJASM3qRLUdGLWQQjn95/nQjFOwiqAUAAABQDAh8S1xHJGI77B04bLiqAoE8VwSglKTrunVSPB62FfYynxdSYUYthHxe1fh8rl0PAAAAAPKFwLeMXHjPI7IC1SnXqwIBOo8AdCpU1226Gb3M54Xk/KiFTMbU1Sjkza27FwAAAACKBYFvGbEC1bKqUwe+ALC1RKLd9bC3rm60LKsPoS5sc2LUQiaMYgAAAABQTgh8AQBpu26dRAcvssWoBQAAAADIDoEvHGWMUSwWS7kejUZdrAaobJnm88bj4c5/+3whVwJfQMq8IdvWm6kBAAAAALJTuYFvdOPmt263h7vfBluMMWpublZLS0uhSwEqXqHm8wKZFGJDNgAAAACoJBUb+PofPEqqiRS6jLISi8Vsh70NDQ2yLCvPFQGVK5v5vHV1o+X1BvNcESpJug7ecNz+hmxspgYAAAAA2avYwDejhq9JFi9v7qmmpib5/f6U65ZlMccTcEmm+bzM1UU2Mo1jkJFOXLRcS9tSjxPZItOGbGymBgAAAADZq9jAN3r6M9Jee6c+wApJPMnsMb/fnzbwBeAe5vPCKU6OYxhTV6O+VhWBLgAAAAA4rGIDX1nVkr+m0FUAAFA07GymZjfsHVEb1NMjh0op8ly6dwEAAAAgPyo38AUAAJ2y7d5lHAMAAAAAFCcCXwAAoHAiu83UGMcAAAAAAMWJwBcAAHRB9y4AAAAAlC4CXwAA0EXI51WNz1foMgAAAAAAPZC6fQcAAAAAAAAAUFLo8AUAoAIYYxROJFKuh+Op1wAAAAAApYPAFwCAEpcpzJWRTly0XEvb2t0rCgAAAABQEAS+AFCijDFKJJIHePF42OVq0FMZw9qMJ3A2zB1TV6OQl4lPAAAAAFCqCHwBoAQZY7Rg4QStX7+w0KUgB8YYnbBwuea3bnTleiNqg3p65FDJk/qYkNcrjyfNAQAAAACAokbgCwAlKJFotxX21tWNltcbdKEi9EQ4kXAs7CXMBQAAAABIBL4AUPIOOXiefL5Q0jWvN0jAVyKWHLSXQr6ej1IgzAUAAAAASAS+AFCU0s3nlbrO6PX5QikDX5SOkM+rGp+v0GUAAAAAAEocgS8AFBnm8wIAAAAAgJ4i8AWAImN3Pq/EjN5CMsYonEjkdI5wPLf7AwAAAACwLQJfAChi6ebzSszoLRRjjE5YuNyxDdcAAAAAAHAKgW+RM8aoIxJJuR6LbHKxGgBOYD5v6QsnEo6GvWPqahTy9nzDNgAAAAAAtiDwLWLGGM2aeplWfrCs0KUAcAjzecvPkoP2UsiXW1gb8nrp1AYAAAAAOILAt4h1RCK2w96Bw4arKhDIc0UAcsV83vIT8nlV4/MVugwAAAAAACQR+JaMC+95RFagOuV6VSCQ9+4wY4xisVjK9Wg0mtfrA8Ug0ziGTLYe18B8XgAAAAAA4DQC3xJhBaplVacOfPPNGKPm5ma1tLQUrAag0Jwex8B8XgAAAAAA4DQCX9gSi8Vsh70NDQ2yLCvPFQHOs7OZmlNhL+MaAAAAAABAPhD4ImtNTU3y+/0p1y3L4mXoKDqZwtzN3bunqq3tXVvnyzSOIRPGNQAAAAAAgHwg8C0gY4w6IpGU67HIJhersc/v96cNfAEn5Tozd8s5sglzM6mrGy3L6kNgW8KMMQonEj2+fzje8/sCAAAAAJBPBL4FYozRrKmXaeUHywpdClBQ6QJdp4NaO2prh2v0qFlpw1y6c0ubMUYnLFyu+a0bC10KAAAAAACOI/AtkI5IxHbYO3DYcFUFAnmuCHCe02MUckWYWxkyde+G4wnHwt4xdTUKeb2OnAsAAAAAACcQ+BaBC+95RFagOuV6VSDgSgBljFEsFku6Fo1G8359lJfNYe4ERzY5sxPU2kGYW/6y7d5dctBeCvl6HtiGvF6+pwAAAAAARYXAtwhYgWpZ1akDXzcYY9Tc3KyWlpaC1oHSkal7Nx4P2w57MwW6BLWwK5yw3707pq5Gfa0qvrcAAAAAAGWFwBeSpFgsZivsbWhokGVZLlSEYpZt9+4hB8+TzxdKuU6gi3zI1L1Ldy4AAAAAoBwR+KKbpqYm+f3+pGuWZRGQQIlEu+2wt65utCyrD983cF3I51WNz1foMgAAAAAAcBWBL7rx+/0pA19gW3TvAgAAAAAAFA8CXwA58flCaQNfAAAAAAAAuIfAF0A3djZkAwAAAAAAQPEh8AXQRbYbsgFuMsYonEikXA/HU68BAAAAAFAJCHwBdJHthmxebzDPFQGbGWN0wsLlmt+6sdClAAAAAABQtAh8AaTEhmxwk53uXbth75i6GoW8XqdKAwAAAACgZBD4AkiJDdnglmy7d5cctJdCvtSBbsjr5Y8RAAAAAICKROALACi4cCK77t2+VhWBLgAAAAAASRD4AgCKCt27AAAAAAD0HIEvAKCohHxe1fh8hS4DAAAAAICSxI42AAAAAAAAAFAm6PAFALjCGKNwIpF0LRxPfjsAAAAAAMgOgS8AIGfpwtzNB0gnLlqupW3t7hUFAAAAAEAFIvAFAKTlZpg7pq5GIS/ThgAAAAAA6CkCXwCoYG535o6oDerpkUMlT/L1kNcrjyfFIgAAAAAAyIjAF6hAxhglEskDvHg87HI1KBRjjE5YuFzzWzc6cr5MYa5EoAsAAAAAQL4R+AIVxhijBQsnaP36hYUuBQUWTiRsh72EuQAAAAAAlIaiCHzvuusu3XLLLVq9erX23Xdf/eIXv9CYMWOSHnvvvffqoYce0tKlSyVJo0eP1g033JDyeABdJRLttsLeurrR8nqDLlSEfMk0riEc/3JtyUF7KeRLPTuXMBcAAAAAgNJQ8MD3t7/9rSZNmqQZM2Zo7Nixmj59usaPH6/3339f9fX13Y6fM2eOTjvtNB144IGqrq7WzTffrKOOOkrvvPOOdtpppwJ8BEDpOuTgefL5QknXvN4gAV8Jy3ZcQ8jnVY3Pl+eqAAAAAABAvhV8K/TbbrtN5513nhobGzV8+HDNmDFDoVBIzc3NSY//9a9/re9973vab7/9tMcee+i+++5TIpHQ7NmzXa4cKH0+XyjlG2Fv8TPGaGM8nvRtXazDdtg7pq5GIW/Bfx0AAAAAAAAHFLTDNxqNasGCBZo8eXLnbV6vV+PGjdPcuXNtnSMcDisWi2mHHXbIV5kAUHSy6eBlXAMAAAAAAJWjoIHvunXrFI/H1a9fvy639+vXT++9956tc1x++eUaOHCgxo0bl3Q9EokoEol0vt/a2trzggGgSNjdcG1MXY36WlUEugAAAAAAVIiCz/DNxU033aRZs2Zpzpw5qq6uTnrMjTfeqGuuucblyoDCMcYokWhPuR6Ph12sBslk2kzNDrsbrtG9CwAAAABAZSlo4Nu3b1/5fD6tWbOmy+1r1qxR//7909731ltv1U033aSXXnpJ++yzT8rjJk+erEmTJnW+39raqoaGhtwKB4qUMUYLFk7Q+vULC10KUsh2MzU72HANAAAAAABsUdBdevx+v0aPHt1lw7UtG7AdcMABKe/305/+VNdee62ef/557b///mmvEQgE1Lt37y5vQKkyxigeD6d8i8X+bTvsrasbLa83mOeKsS27oxjsYsM1AAAAAACwtYKPdJg0aZImTpyo/fffX2PGjNH06dO1ceNGNTY2SpLOPvts7bTTTrrxxhslSTfffLOmTp2qRx99VEOGDNHq1aslSbW1taqtrS3YxwHkW7bdu4ccPE8+Xyjlutcb5KX+eZBpXIPdUQx2MbIBAAAAAABsreCB7ymnnKK1a9dq6tSpWr16tfbbbz89//zznRu5ffrpp/Ju1b129913KxqN6tvf/naX80ybNk1XX321m6UDrkok2rPq3rWsPgSBLst2XAOjGAAAAAAAgNMKHvhK0sUXX6yLL7446dqcOXO6vP/JJ5/kvyCgyNG9W5yyGdfAKAYAAAAAAJAPRRH4AsiOzxdKG/ii8DKNa2AUAwAAAAAAyAcCXwDIQroZvVvP52VcAwAAAAAAKAQCXwCwKdsZvQAAAAAAAG5jgCQA2GR3Ri/zeQEAAAAAQKHQ4QsAPZBuRi/zeQEAAAAAQKEQ+AJADzCjFwAAAAAAFCNecwwAAAAAAAAAZYIOXwD4L2OMwolEyvVwPPUaAAAAAABAMSDwBQBtDntPWLjc1qZsAAAAAAAAxYrAF3CBMUaJRHtO54jHww5Vg2TCiYTtsHdMXY1CXibiAAAAAACA4kPgWyGMMYrFYinXo9Goi9WUn3SBrjFGCxaeqra2d12uCj215KC9FPKlDnRDXq88Ho+LFQEAAAAAANhD4FsBjDFqbm5WS0tLoUspS5sD3Qlav36hK9erqxstrzfoyrXKSTbzeUM+r2p8PjfKAgAAAAAAcBSBbwWIxWK2w96GhgZZlpXnispLItFuK+ytrR2u0aNm5dwZ6vUGK6q7NFNQa+8k0omLlmtpW25jNQAAAAAAAIodgW+FaWpqkt/vT7luWVZFhYlOO+TgefL5QknXKi2odUIhNlJjPi8AAAAAAChlBL4Vxu/3pw180V2mDde23kzN5wulDHyRvWw2UrNjRG1QT48cKqXJ3ZnPCwAAAAAAShmBLypapjCXDdeKR6aN1OwgzAUAAAAAAOWOwDePjDHqiESSrsUim1yuBttybrO1anm926tXrxGKRj3yePjaOiUSj2uQ10iSfLGofIncNlJL/r8RAAAAAIDULMuSj429UUIIfJMwxsjEUm8SZaLxzn93bNokT5IQysho1rTLtfaTj/JSI3Jnd7M1KfmGa8YYrVnzb61fv0GS5PF49cknn+Sj1IqVMEY39N7c1btqxQp56c4FAAAAABTAdtttp/79+/OqUZQEAt9tGGO0dsbbiq5otXX8L88/U3ET6/H1Bg4brqpAoMf3hzPSbbYmJd9wbdWqVWpt3ah+/forFArxQz8P4sYotnFzx/SQmmr5+BwDAAAAAFxkjFE4HNa//vUvSdKAAQMKXBGQGYHvNkwsYTvsXbvpnxnD3h2H7KpTr7lZnhS7RFUFAgSFRSDbzdbi8bi++OIL1dfXq0+fPnmsrLLFjZEntnmkQ3U1gS8AAAAAwH3BYFCS9K9//Uv19fWMd0DRI/BNY8CUsfL4u/8n7ti0qbOz98J7HpEVqE55DgLdwsm0IVs8Hu7xuWOxzUF/KGQ/JAYAAAAAAKVpy/P/WCxG4IuiR+CbhsfvkzdJ4OtJ+Do7e61Atazq1IEvCsO5DdnSI8wHAAAAAKD88fwfpYTAF2Upmw3Z6upGy+sN5rkipGKMUaotEhPGuFoLAAAAAABAqfMWugAg3w45eJ4OP2xJyrfRo37LX+oKxBij5eGIlm5oT/r2btumQpdYUN/5znd00kknOX7ep556SkOHDpXP59MPf/hDx89fTB544AFtt912hS6ji22/rocffnjRfB3s1nLooYfq0UcfzX9BqChf+9rX9Lvf/a7QZVQEj8ejp556qtBlALZdffXV2m+//QpdhuPmzJkjj8ejL774QlJxPW6xW8v999+vo446Kv8FAdvgcQOQHoEvyt6WDdlSvVVa2Pud73xHHo+n29vy5csdv5YxRvE0bx3GKBxP1d/7pZDP2+WHVbInqlseMG/7tnr16s5jXnnlFR1//PEaOHBg0nPEYjFdfvnl2nvvvVVTU6OBAwfq7LPP1sqVK3P4LGT2ySefyOPxaPHixV1uv+OOO/TAAw84fr3//d//1be//W21tLTo2muvdfz8xeSUU07RBx98UOgy0nryySdL6uvwzDPPaM2aNTr11FMLXUoXCxcu1De+8Q1tt9126tOnj84//3y1tbV1OWb+/Pk68sgjtd1222n77bfX+PHj9dZbb9k6vzFGxxxzTMkHZXPmzNGoUaMUCAQ0dOhQWz9jHnvsMe23334KhUIaPHiwbrnllm7H3HXXXdpzzz0VDAY1bNgwPfTQQ13WDz/88KQ/o4877rjOY6ZMmaIrrrhCiUTm3wtIbvXq1brkkks0dOhQVVdXq1+/fjrooIN09913Kxzu+d4F2Ur1B8tk3wMHH3ywKzVdffXV8ng8uuCCC7rcvnjxYnk8Hn3yySe2z1VMf6irFE1NTZo9e3ahy8i7UnjcsrVNmzbpqquu0rRp0wpdShcbNmzQD3/4Qw0ePFjBYFAHHnig5s+f3+WYq6++WnvssYdqamq0/fbba9y4cZo3b17a8959993aZ5991Lt3b/Xu3VsHHHCA/vSnP+XzQ8mrTz/9VMcdd5xCoZDq6+t16aWXqqOjI+197Dzekjb/wWCfffZRdXW16uvrddFFF3Wubfl5vO1bTU1N5zFPPvmk9t9/f2233XaqqanRfvvtp4cffrjLNXjcAKRXsYGviRklovFubyYaL3RpQN4dffTRWrVqVZe3XXbZxdFrZOre3baDd3httUb0CiZ9Gxqyv/nh+++/3+Xjqq+v71zbuHGj9t13X911111J7xsOh7Vw4UJdddVVWrhwoZ588km9//77OuGEE3r8ediywV9P1NXVOd7l0dbWpn/9618aP368Bg4cqF69ejl6/mITDAa7fA8Uox122KGkvg4///nP1djYKK+3eB5CrFy5UuPGjdPQoUM1b948Pf/883rnnXf0ne98p/OYtrY2HX300dp55501b948vfbaa+rVq5fGjx9v6//p9OnTS/4PhB9//LGOO+44HXHEEVq8eLF++MMf6txzz9ULL7yQ8j5/+tOfdMYZZ+iCCy7Q0qVL9ctf/lK333677rzzzs5j7r77bk2ePFlXX3213nnnHV1zzTW66KKL9Ic//KHzmCeffLLLz+alS5fK5/Pp5JNP7jzmmGOO0YYNG0r6yXMhffTRRxo5cqT+/Oc/64YbbtCiRYs0d+5cXXbZZXr22Wf10ksvFbpESdLMmTO7fC8888wzrl27urpa999/v/7xj3+4dk04o7a2Vn369Cl0GXlXCo9btvbEE0+od+/eOuiggwpdShfnnnuuXnzxRT388MNasmSJjjrqKI0bN06fffZZ5zFf+cpXdOedd2rJkiV67bXXNGTIEB111FFau3ZtyvMOGjRIN910kxYsWKA333xTX//613XiiSfqnXfecePDclQ8Htdxxx2naDSqv/3tb3rwwQf1wAMPaOrUqSnvY+fxliTddtttuvLKK3XFFVfonXfe0UsvvaTx48d3rjc1NXV7Ljp8+PAujwl22GEHXXnllZo7d67efvttNTY2qrGxsctjFh43ABmYCrN+/Xojybz7wz+ZlstfSfsWj3QkPUe0vd3cOuE4c+uE40y0vd3ljyB7kUjETJs2zUybNs1EIpFCl+OIRCJhOjo2pnyLRNaal2bval6avavp6Njo+PXb29vNu+++a9pL4Ou/rYkTJ5oTTzwx6drPfvYzM2LECBMKhcygQYPMhRdeaDZs2NDlmNdee80cdthhJhgMmu22284cddRR5vPPPzfGGBOPx80NN9xghgwZYqqrq81XRowwtzz4iFm8fqNZvH6juffZPxlJ5ldPP2uG7zfSVAeDZp8xY83zC98yiUSi8xpPPfWUGTlypAkEAmaXXXYxV199tYnFYsYYYwYPHmwkdb4NHjzYGGPMX//6VyPJ/Oc//7H1eZBkfv/732c87o033jCSzIoVKzIe+/HHHxtJZtasWebQQw81gUDAzJw50xhjzL333mv22GMPEwgEzLBhw8xdd93VpZat3w477DBjTPev1WGHHWa+//3vm0svvdRsv/32pl+/fmbatGldakj3NdzyOdr67a9//atZt26dOfXUU83AgQNNMBg0I0aMMI8++miX88bjcXPzzTeb3Xbbzfj9ftPQ0GCuu+66zvVPP/3UnHzyyaaurs5sv/325oQTTjAff/xxxs/ZFvfff78ZPny48fv9pn///uaiiy7qXFuxYoU54YQTTE1NjenVq5c5+eSTzerVqzvXFy9ebA4//HBTW1trevXqZUaNGmXmz59vjDFm5syZpq6urvPYadOmmX333dc89NBDZvDgwaZ3797mlFNOMa2trV0+1q2/j/fZZx/z+OOP2/o4Ojo6zHe/+90v/w985Stm+vTpXY5J9nW95JJLOt9fuXKlOfbYY011dbUZMmSI+fWvf20GDx5sbr/99s5jJJl7773XnHTSSSYYDJqhQ4eap59+ust1lixZYo4++mhTU1Nj6uvrzZlnnmnWrl3bud7W1mbOOussU1NTY/r3729uvfXWbrVs61//+pfxeDxm6dKlXW534mdHuu+vTH71q1+Z+vp6E4/HO297++23jSTzj3/8wxhjzPz5840k8+mnn6Y8JpVFixaZnXbayaxatcr2z46tLV++3Jxwwgmmvr7e1NTUmP3339+8+OKLXY5Jdt66urrOnyHGGNPS0mJOPfVUs/3225tQKGRGjx5t/v73v9uu47LLLjN77bVXl9tOOeUUM378+JT3Oe2008y3v/3tLrf9/Oc/N4MGDer8uX3AAQeYpqamLsdMmjTJHHTQQSnPe/vtt5tevXqZtra2Lrc3NjaaM88809bHg67Gjx9vBg0a1O1zusXWv2ft/AyZM2eO+epXv9r5c/nyyy/v/F1sjDGPP/64GTFihKmurjY77LCDOfLII01bW5uZNm1a0t81W66b7P+PG7+Htvz8/8Y3vmFOPvnkztsXLVpkJHU5Nt3Pz4kTJ3b7+Oz8vsv0+TzssMPMRRddZC666CLTu3dv06dPHzNlypQuX7dNmzaZH//4x2bgwIEmFAqZMWPGdH5ujfnyd97zzz9v9thjD1NTU2PGjx9vVq5c2aWWVL9zTzvtNDNhwoQux0ajUdOnTx/z4IMPZvwYM32N3n77bXPEEUd0fs+cd955XX5X/PWvfzVf/epXTSgUMnV1debAAw80n3zyiTHmy6/fFlt+l95yyy2mf//+ZocddjDf+973TDQatf35Smfb6xmz+efWlseddmt46KGHzOjRo01tba3p16+fOe2008yaNWu6fMxbP37d9nGLMcZce+21ZscddzS1tbXmnHPOMZdffnlePhczZ840DQ0NJhgMmpNOOsnceuut3WrZ1nHHHdft5/8bb7xhxo0bZ/r06WN69+5tDj30ULNgwYIux/znP/8x559/vqmvrzeBQMDstdde5g9/+EPnerrHDJmEw2Hj8/nMs88+2+X2UaNGmSuvvDLl/bbkBC+99JKt62yx/fbbm/vuu8/28XYeKyZ7PHbiiSeaiRMndr6/adMmc9lll5lBgwYZv99vdtttt6zqeO6554zX6+3ymPruu+82vXv3TpkZ2Hm89fnnn5tgMJjV53Hx4sVGknnllVfSHjdy5EgzZcqULre5/bihlHMAFI8tP2/Wr1+f1+sUT3tOkfEP7i2PxaenGBljtGDhBM15ee+Ub6++NrYgdYWjHQV5Mw5tbub1evXzn/9c77zzjh588EH95S9/0WWXXda5vnjxYh155JEaPny45s6dq9dee03HH3+84vHNnfE33nijHnroIc2YMUNvL12qM753sa48/xytWzBPI3oFtUsoIEm6/4Zr9Yvbb9Mb8+erd8Cvn1x8YWfn3Kuvvqqzzz5bl1xyid5991396le/0gMPPKDrr79ekjpfjrWlQ2jbl2ftt99+GjBggL7xjW/o9ddfz/lzsn79enk8nqw6ba+44gpdcsklWrZsmcaPH69f//rXmjp1qq6//notW7ZMN9xwg6666io9+OCDkqQ33nhDkvTSSy9p1apVevLJJ1Oe+8EHH1RNTY3mzZunn/70p/rJT36iF198sXM93dfwwAMP1Pvvvy9J+t3vfqdVq1bpwAMP1KZNmzR69Gj98Y9/1NKlS3X++efrrLPO6qxLkiZPnqybbrpJV111ld599109+uij6tevn6TNXczjx49Xr1699Oqrr+r1119XbW2tjj76aEWj0Yyfr7vvvlsXXXSRzj//fC1ZskTPPPOMhg4dKklKJBI68cQT9fnnn+vll1/Wiy++qI8++kinnHJK5/3POOMMDRo0SPPnz9eCBQt0xRVXyLKslNf78MMP9dRTT+nZZ5/Vs88+q5dfflk33XRT5/rW38fvvPOOfvSjH+nMM8/Uyy+/nPFjSSQSGjRokB5//HG9++67mjp1qv7v//5Pjz32WMb7brFljMicOXP0u9/9Tvfcc4/+9a9/dTvummuu0YQJE/T222/r2GOP1RlnnKHPP/9ckvTFF1/o61//ukaOHKk333xTzz//vNasWaMJEyZ03v/SSy/Vyy+/rKefflp//vOfNWfOHC1cmH6zy9dee02hUEh77rlnl9tz/dmR7vtL2vzy6W27R7YWiUTk9/u7dB0Hg8HOmiVp2LBh6tOnj+6//35Fo1G1t7fr/vvv15577qkhQ4akPHc4HNbpp5+uu+66S/3790/7+Umlra1Nxx57rGbPnq1Fixbp6KOP1vHHH69PP/00q3Mcdthh+uyzz/TMM8/orbfe0mWXXdb5MsYto2HmzJmT8hxz587VuHHjutw2fvx4zZ07N+V9IpGIqquru9wWDAb1z3/+UytWrEh7zBtvvJGye/r+++/Xqaee2uXlm5I0ZswYvfrqqynrKQRjjGKbNhXkze7v93//+9/685//rIsuuqjb53SLbTvU0/0M+eyzz3Tsscfqq1/9qt566y3dfffduv/++3XddddJklatWqXTTjtN3/3ud7Vs2TLNmTNH3/zmN2WMUVNTkyZMmNDl1UQHHnhg2vrd/D1000036Xe/+53efPPNpLVk+vl5xx136IADDtB5553X+fE1NDSk/fgyfT63ePDBB1VVVaU33nhDd9xxh2677Tbdd999nesXX3yx5s6dq1mzZuntt9/WySefrKOPPrpLx3I4HNatt96qhx9+WK+88oo+/fRTNTU1da6n+517xhln6A9/+EOXl2e/8MILCofD+n//7/+l/Ril9F+jjRs3avz48dp+++01f/58Pf7443rppZd08cUXS5I6Ojp00kkn6bDDDtPbb7+tuXPn6vzzz0/7yoq//vWv+vDDD/XXv/61sztx6zE1dj5fucpUQywW07XXXqu33npLTz31lD755JO0v8+29etf/1rXX3+9br75Zi1YsEA777yz7r777qzryPS5mDdvns455xxdfPHFWrx4sY444ohu35/JvPbaa9p///273LZhwwZNnDhRr732mv7+979r991317HHHqsNGzZI2vxY6ZhjjtHrr7+uRx55RO+++65uuukm+Xw+SZkfMzzwwANpvy86OjoUj8eT/l7a8phgW9FoVPfcc4/q6uq07777Zvy4pc0dsrNmzdLGjRt1wAEH2LqP5MxjRWnz48Xf/OY3+vnPf65ly5bpV7/6lWprazvXhwwZoquvvjrl/efOnau99967y+Ot8ePHq7W1NWXHsp3HWy+++KISiYQ+++wz7bnnnho0aJAmTJiglpaWlLXcd999+spXvqJDDjkk6boxRrNnz9b777+vQw89tMtaMT5uAIpGXuPkIrQlSX//jQUmHulI+bb1X9O3RYdvYXV0bOzs3s30Nv/Nk9N+LXsq2V/2NkZiZvDlzxbkbWMklqbariZOnGh8Pp+pqanpfNu2e2uLxx9/3PTp06fz/dNOOy1lx9amTZtMKBQyf/vb34wxxnQkEmbx+o3m/5010Zx62mnGmC+7GLb+i+8f//hHI6nzc3nkkUeaG264ocu5H374YTNgwIDO95WkQ+i9994zM2bMMG+++aZ5/fXXTWNjo6mqqurWUZDuHNtqb283o0aNMqeffnra47bY0uG77V/pd9ttt26dStdee6054IADutxv0aJFXY5J1gl68MEHdznmq1/9qrn88stT1rTt1/A///lPl26rVI477jjz4x//2BhjTGtrqwkEAubee+9NeuzDDz9shg0b1uX/WiQSMcFg0Lzwwgtpr2OMMQMHDkzZcfHnP//Z+Hy+Ll2Z77zzjpFk3njjDWOMMb169TIPPPBA0vsn6/ANhUJdOnovvfRSM3bsWGNM9+/jLc455xxz2n+/j7N10UUXmW9961ud76fr8F22bJmR1NmhbIwx//jHP4ykbh2+W3c4tLW1GUnmT3/6kzFm8/fXUUcd1aWOlpaWzb//3n/fbNiwwfj9fvPYY491rv/73/82wWAwbYfv7bffbnbdddeMH3M2PzsyfX8ZY8xZZ51lrrjiipTrS5cuNVVVVeanP/2piUQi5vPPPzff+ta3jKQuP0+WLFlidtttN+P1eo3X6zXDhg3r7B5L5fzzzzfnnHNO5/t2fnbYsddee5lf/OIXac+7dYfvr371K9OrVy/z73//O+n5/vnPf5phw4aZefPmpbzm7rvv3u3n65afweFwOOl9fvX/2TvvsCqOr49/L+XCpRdBQBCUpqhYgwFjsAEaxRKjiCgolliDGhs20MQusfeusccSI6IiiiJBVBQsNCESDXZRkQ6X8/7Be/fHctuiIJrs53n2gTszO3tmZnfm7OyZOZs3k5aWFp0/f57EYjGlpaVRkyZNCADznAQHB5OZmRnduHGDysvL6fr161S/fn0CIGVZSEQUHx9PAGTK+vvvv5OKigrLeqiuqaz3feyDq5559epVAkDHjh1jhRsbGzNj/fTp05lwZX3IrFmzpPr19evXk46ODonFYkpISCAAcp8feauJAJCmpiZLB5H3PNX0OFTZYnPQoEHUpUsXIpK28FXWfxLJtr5ThLL6lOTZtGlTVpoZM2ZQ06ZNiahitYuqqiplZ2ez8u7atSsFBwcTUcWYB4AyMjJY16lfvz7zW9GYW1paSvXq1aM9e/YwYb6+vuTj46O0jMraaMuWLWRoaMiyQA8PD2csDF+9ekUAKDo6Wub5six8ra2tqazsfysyBwwYwMjKpb4UwdXCV5EMspCsNqm6+kqehW/79u1Zq56IiDp06FDjdeHr60vffPMNK97Hx0ehha9Ep1RmlSkWi0lXV5ex4D179iypqKgwz1NVFOkMRETHjh0jR0dHhdd0dXUld3d3ys7OprKyMtq7dy+pqKiQg4MDK90ff/xB2traJBAIyMLCgtEtFXH79m3S1tYmVVVV0tfXp/DwcKXnKKOqrqjMwjctLY0ASK0WqkyXLl1YekZVRo0aJdXX5efnEwA6ffq0zHO46FuLFy8mdXV1cnR0pDNnzlBcXBx17dqVHB0dZc5FFBYWkqGhIS1dulQq7s2bN6StrU1qamqkoaFB27dvl0rzsfUG3sKXpyb4WBa+arU6m/wpoyaAilC1rqWoEYhI4f6DXCzsPlc6fhUPVVUtufEqKqLPfs/F2qBz584s6wCJNdD58+exePFipKamIjc3F2VlZSgqKkJBQQG0tLSQmJjI2lupMhkZGSgoKICHhwcTVg6gtKQErVu3ZqV1dnZm/jc3NwcAPH/+HA0bNkRSUhJiY2MZi16g4gt6ZTlk4ejoCEdHR+a3m5sbMjMzsXLlSqkN/rlQWlqKgQMHgohkWlIoorKlQ35+PjIzMzFixAiMGjWKCS8rK4O+vn615apcd0BF/VW2/lTWhrIQi8VYtGgRDh8+jOzsbJSUlKC4uJhJn5KSguLiYnTt2lXm+UlJScjIyJDah7aoqAiZmZkKy/P8+XM8fvxYbt4pKSmwsrJiWU85OTnBwMAAKSkp+OKLLzBlyhSMHDkSe/fuRbdu3TBgwADY2trKvaaNjQ1L1sp1KOs+Bir60ar3sTzWr1+PHTt24OHDhygsLERJSQlnz+JpaWlQU1NDmzZtmDA7OzsYGhpKpa18L2hra0NPT48pR1JSEi5evMiy9JCQmZnJyNW+/f9WQxgZGbGeIVkUFhZKWcwAH9Z3KLu/AEg5AKtKs2bNsHv3bkyZMgXBwcFQVVXFDz/8gPr16zNWKIWFhRgxYgQ6dOiAAwcOQCwWY8WKFejZsyeuX7/OWKhU5uTJk7hw4QJu3bql8PrKyMvLQ2hoKMLDw/HkyROUlZWhsLCwWha+iYmJaN26NYyMjGTGN2jQAKmpqR8kpyxGjRqFzMxM9OrVC6WlpdDT00NQUBBCQ0OZup07dy6ePn2KL7/8EkSE+vXrIyAgAMuWLZO51/P27dvRokULuLi4SMWJRCKUl5ejuLhYZpvwVI9r166hvLwcfn5+KC4uZsUp6kNSUlLg6urK0qE6dOiAvLw8/PPPP2jZsiW6du2KFi1awMvLC56envjuu+9k9lVVWblyJcvS3Nzc/KOPQz///DOaNm2Kc+fOSe2Xqqz/dHBwUFrGqiirz4YNGwKo8DhfOY2rqyvCwsIgFotx584diMViqesXFxez9rbV0tJijYGVxzhlY66amhoGDhyIffv2YejQocjPz8fvv/+OgwcPciqjojZKSUlBy5YtWRboHTp0QHl5OWO1N2zYMHh5ecHDwwPdunXDwIEDGT1RFs2aNWOsQiVlvXPnDgBwrq8PRZEMAJCQkIDQ0FAkJSXh9evXzKqMhw8fwsnJSWn+aWlpGDduHCvMxcUFFy5c4CwHl7pISUmRsuJ2dXXFmTNn5MpWWFgIAFJ6wbNnzzBnzhxER0fj+fPnEIvFKCgoYMa8xMREWFpayn2WFOkMANCvXz+lFud79+5FYGAgGjRoAFVVVbRp0wa+vr5ISEhgpZPsaf/y5Uts3boVAwcORHx8vMJ9lB0dHZGYmIi3b9/it99+Q0BAAC5dusSpPSV8iK4IVNSRqqoq3N3d5aapDSeHXPSt8vJylJaWYs2aNfD09AQAHDhwAGZmZrh48SJrL18AOH78OGMVXhVdXV0kJiYiLy8PUVFRmDJlCho3boxOnToxaXi9gYdHPv/dCd9/CUSEHTt2KFwi8W9GVVVL4YTvx0SkrorkBV7KE9bStauDtrY2s3xPQlZWFnr16oWxY8di4cKFMDIywpUrVzBixAiUlJRAS0uLNYgSESr7Q337/8u0Tp46hQYNGqCcCBn5FS+XLYzZE5uVl9tLXmwkCnBeXh7mz5+Pb7/9VkpuWRNNinBxcZG7dEsRksnev//+GxcuXICenl61zq/8MiNZFrl161bW5BoAlmLOlapbFQgEAtaSbmVtKIvly5dj9erVWLVqFVq0aAFtbW1MmjSJ+VikTHnKy8tD27ZtsW/fPqk4ExMThefWhGIWGhqKwYMHIzw8HBEREQgJCcHBgwflvgwoqkNJe4WHh6NBgwasdBoaGkplOXjwIKZOnYqwsDC4urpCV1cXy5cvV+r1+X1QVg5vb28sXbpU6jxzc3NkZGS81zXr1auH169fs8Kq23dUpaaU88GDB2Pw4MF49uwZtLW1IRAI8Msvv6Bx48YAgP379yMrKwtxcXHMS8n+/fthaGiI33//HYMGDZLK88KFC8jMzJTa0qV///7o2LGjwu0TKjN16lRERkZixYoVsLOzg0gkwnfffcf6ICsQCKSW71f+mFsT9WRmZoZnz56xwp49ewY9PT25+QsEAixduhSLFi3C06dPYWJiwrxESupWJBJhx44d2Lx5M549ewZzc3Ns2bIFurq6Un1Afn4+Dh48iAULFsi8Xk5ODrS1tT+plzY1DQ38sPu3Ors2F+zs7CAQCJhteyRUbqOqKOpDlKGqqorIyEj8+eefOHfuHNauXYvZs2cjPj5eqRNYMzMzKR1kyZIlH3UcsrW1xahRozBz5kxs375dKi9F/WddkZeXB1VVVSQkJEjpD5Unp2W1q6Rv4fJc+fn5wd3dHc+fP0dkZCREIhG6d++u9LyaeGZ37tyJH374AWfOnMGhQ4cwZ84cREZG4ssvv5SZXtk4yKW+5KGioqKwT+Yig2QbC8n2XiYmJnj48CG8vLxq3CCnNutCHsbGxhAIBFJ6QUBAAF69eoXVq1fD2toaGhoacHV15fw818S9ZGtri0uXLiE/Px+5ubkwNzeHj48P0ydKkLwT2dnZ4csvv4S9vT22b9+O4OBguXkLhUKmD2vbti2uX7+O1atXY/PmzZxk46IrKrv/akonqLxtDgBGR1C0hZUyfUvST1aeADcxMUG9evVkfujetm0bevXqxdpaQoKKigpT161atUJKSgoWL17MmvD9FPUGHp5PBX7C9zOntLSU82SvlZWVwn0teT4MgUAALeHn+0glJCSgvLwcYWFhFUoigIOHDgEAxEQQE6GFszPOR0VhXmgoMgqKUSSu9GJo1QhCDQ3EpWegV5sKq62Gkihd7gNwmzZtkJaWJvUyWBl1dXVmHy9FJCYmVvvlTDLZe//+fVy8ePGDrUDq168PCwsL/PXXX/Dz85OZRigUAgCnMimichtKJrS47AcWGxuLPn36YMiQIQAqJt/T09MZRc3e3h4ikQhRUVEYOXKk1Plt2rTBoUOHYGpqWu3JcV1dXdjY2CAqKgqdO3eWim/atCkePXqER48eMVa+ycnJePPmDUuRdHBwgIODAyZPngxfX1/s3LmT036DVXFycoKGhgYePnyo0GpCHrGxsXBzc2NZ4yizcq6Mo6MjysrKcOvWLbRt2xZAhdVx1ZcpZbRp0wZHjx6FjY0N1NSk+yVbW1uoq6sjPj6esSx7/fo10tPTFZa7devWePr0KV6/fs1Y8nG575ydnREVFYX58+dL5ans/qoukheGHTt2QFNTk7HWLigogIqKCst6TvJb3iTXzJkzpWRq0aIFVq5cCW9vb84yxcbGYtiwYcw9mZeXh6ysLFYaExMTPHnyhPl9//59FBQUML+dnZ2xbds25OTkyLXyVYarqytOnz7NCouMjOS096CqqirzEeTAgQNwdXWVmkhTV1eHpaUlgIoX2l69eklZ+B45cgTFxcVMf1OVu3fvcram/1gIBAKoV/OD48fG2NgYHh4eWLduHSZOnCh3H1+uNG3aFEePHgURMc9MbGwsdHV1mTYWCATo0KEDOnTogHnz5sHa2hrHjx/HlClTIBQKqzWm1cU4NG/ePNja2kpZryrrPwFUu3xc6hOA1MdByf6nqqqqaN26NcRiMZ4/fy53n0tlKBtzgYoVUlZWVjh06BAiIiIwYMAATu8PytqoadOm2LVrF/Lz85n7MzY2FioqKqzVJa1bt0br1q0RHBwMV1dX7N+/X+6EryI+tL5MTEzw9OlTVpslJiZWK4/U1FS8evUKS5YsYXQYeXtHy8PR0RHXr1+Hv78/E1bVf4UyuNRF06ZNZd5/ihAKhXByckJycjJjyQlUtOuGDRvwzTffAAAePXqEly9fMvHOzs74559/kJ6eLtPKV5HOUF20tbWhra2N169f4+zZs1i2bJnC9BJL0epQ3XO46IpVdQKxWIy7d+8yz22LFi1QXl6OS5cuSe3NzxVXV1csXLgQz58/ZyyaIyMjoaenx8laWZ6+1aFDBwAV1umS/i0nJwcvX76EtbU1K48HDx7g4sWLOHnyJCeZZdX1p6g38PB8KvBeyf5FTJ06FbNmzZJ7BAYG8tsb8MjFzs6OWX5z4V4qlmzdjvWbNgEAkt8V4u67Qnw7cRKuX78O31Hf43ZSEh6kp+Hwtq14/eoltHV14T8xCCuCZ+Lk/l/x6K+/kJJ4C79t2YS9/++cjAvz5s3Dnj17MH/+fNy7dw8pKSk4ePAg5syZw6SRvKxIJp4AYNWqVfj999+RkZGBu3fvYtKkSbhw4QLGjx/PnJeXl4fExERGYX/w4AESExOZr82lpaX47rvvcOPGDezbtw9isRhPnz7F06dPP8gSY/78+Vi8eDHWrFmD9PR03LlzBzt37sQvv/wCADA1NYVIJGIcw7x9+/a9riNpw7Vr1+Kvv/7C3r17sen/21AR9vb2jKVWSkoKvv/+e5YVoKamJmbMmIHp06djz549yMzMxNWrVxmrKD8/P9SrVw99+vRBTEwMHjx4gOjoaPzwww/4559/lF4/NDQUYWFhWLNmDe7fv4+bN29i7dq1AIBu3bqhRYsW8PPzw82bN3Ht2jX4+/vD3d0d7dq1Q2FhISZMmIDo6Gj8/fffiI2NxfXr16WcinFFV1cXU6dOxeTJk7F7925kZmYy8uzmcB/b29vjxo0bOHv2LNLT0zF37txqvZg1adIE3bp1w+jRo3Ht2jXcunULo0ePhkhUve1pxo8fj5ycHPj6+uL69evIzMzE2bNnMXz4cIjFYujo6GDEiBGYNm0aLly4gLt372LYsGEyl99XpnXr1qhXrx7LISKX+y44OBjXr1/HuHHjcPv2baSmpmLjxo14+fKl0vsLqHBMosjaBgDWrVuHmzdvIj09HevXr8eECROwePFixjrXw8MDr1+/xvjx45GSkoJ79+5h+PDhUFNTY16gsrOz0aRJE8bixczMDM2bN2cdANCwYUOlVoyVsbe3x7Fjx5CYmIikpCQMHjxYapK5S5cuWLduHW7duoUbN25gzJgxrEkWX19fmJmZoW/fvoiNjcVff/2Fo0ePMg7XqsouizFjxuCvv/7C9OnTkZqaig0bNuDw4cOYPHkyqx4rL8l++fIlNm3ahNTUVCQmJiIoKAhHjhzBqlWrmDTp6en49ddfcf/+fVy7dg2DBg3C3bt3sWjRIikZtm/fjr59+8r9mBYTE8OaOODhzoYNG1BWVoZ27drh0KFDSElJQVpaGn799VekpqZWa1XJuHHj8OjRI0ycOBGpqan4/fffERISgilTpkBFRQXx8fFYtGgRbty4gYcPH+LYsWN48eIF0/fa2Njg9u3bSEtLw8uXLxVuPQbUzThUv359TJkyBWvWrGGFK+s/JeWLj49HVlYWXr58qdQyWll9Snj48CGmTJmCtLQ0HDhwAGvXrkVQUBCAig+bfn5+8Pf3x7Fjx/DgwQNcu3YNixcvRnh4uMLrV0bRmCth8ODB2LRpEyIjI+V+rK4KlzbS1NREQEAA7t69i4sXL2LixIkYOnQo6tevjwcPHiA4OBhxcXH4+++/ce7cOdy/f/+9x/MPra9OnTrhxYsXWLZsGTIzM7F+/XpERERUS4aGDRtCKBQy4+PJkyfx008/VSuPiRMnYvv27di9ezfu37+Pn3/+Gbdv366WTsClLiSW1StWrMD9+/exbt06hds5SPDy8pJaTWdvb4+9e/ciJSUF8fHx8PPzY1lfuru74+uvv0b//v0RGRmJBw8eICIigrmeIp0BqNgCoEmTJgrlOnv2LM6cOYMHDx4gMjISnTt3RpMmTTB8+HAAFdbXs2bNwtWrV/H3338jISEBgYGByM7OZm0n0bVrV6xbt475HRwcjMuXLyMrKwt37txBcHAwoqOjOT8nkvpRpit26dIF4eHhCA8PR2pqKsaOHYs3b94w8TY2NggICEBgYCBOnDjB9HmVP7hXlb0qnp6ecHJywtChQ5GUlISzZ89izpw5GD9+PLOq7dq1a2jSpAmys7OZ85TpWw4ODujTpw+CgoLw559/4u7duwgICECTJk2kPjTt2LED5ubm6NGjh5R8ixcvZpw1p6SkICwsDHv37pX6YMzrDTw8CqjVHYI/QRinbTdvvncen5LTtn+bQzYuVHbaVlaWXycyfM6btUscqZSVl0sdK8LCyNzcnDRFInLr2o1+3ry1whnD39mU+DafEt/m07bwM9Sy/Zck1NAgPQMD8vTyopc5OVRWXk6lYjH9snIlOTo6krq6OpmYmJCXlxddunSJiKQdUxBJO0shIjpz5gy5ubmRSCQiPT09cnFxoS1btjDxJ0+eJDs7O1JTU2OcZyxdupRsbW1JU1OTjIyMqFOnTnThwgVW2SXXr3pIHCBInKfJOpQ5Oat8flXna0RE+/bto1atWpFQKCRDQ0P6+uuvWc51tm7dSlZWVqSiokLu7u6stpKgzIEDEdEvv/xC5ubmJBKJyMvLi/bs2cOqc1lO2169ekV9+vQhHR0dMjU1pTlz5pC/vz/r2mKxmH7++WeytrYmdXV1atiwIcv505MnT8jf35/q1atHGhoa1LhxYxo1ahTnjeg3bdrE3Dfm5uY0ceJEJu7vv/+m3r17k7a2Nunq6tKAAQPo6dOnRFTRBw4aNIisrKxIKBSShYUFTZgwgXk2ZTltU+aEpby8nFatWiX3PlZEUVERDRs2jPT19cnAwIDGjh1LM2fOlHKuoqhdHz9+TD169CANDQ2ytram/fv3k6mpKW3atIlJAyUOvoiI0tPTqV+/fmRgYEAikYiaNGlCkyZNYhwCvXv3joYMGUJaWlpUv359WrZsGSdHRNOnT6dBgwaxwpTdd0RE0dHR5ObmRhoaGmRgYEBeXl5MvLL7y93dnXWfy2Lo0KFkZGREQqGQnJ2dWU6HJJw7d446dOhA+vr6ZGhoSF26dKG4uDgmXvIMK3reZdW9tbU1hYSEyD3nwYMH1LlzZxKJRGRlZUXr1q2Tquvs7Gzy9PQkbW1tsre3p9OnT0u1aVZWFvXv35/09PRIS0uL2rVrxzg+4yI7UUU/KOmLGjduzMqfqOIZqfw8vHjxgr788kvS1tYmLS0t6tq1K129epV1TnJyMrVq1Yrps/v06UOpqalS105NTSUAdO7cOZmy/fPPP6Surk6PHj1SWAYe+Tx+/JgmTJhAjRo1InV1ddLR0SEXFxdavnw55ef/T2fi0odER0fTF198QUKhkMzMzGjGjBlUWlrhJDY5OZm8vLzIxMSENDQ0yMHBgeUc6Pnz5+Th4UE6Ojqs+1LWdYk+zjgkq/9/+/Yt1atXT0oPUdZ/pqWl0ZdffkkikUjqXHkoqk+iin5u3LhxNGbMGNLT0yNDQ0OaNWsWy4lbSUkJzZs3j2xsbJjxsl+/fnT79m0ikh7ziIiOHz9OVV/5FI25RBXtC4Csra2r5fxYWRvdvn2bOnfuzOhqo0aNYpyXPX36lPr27Uvm5uYkFArJ2tqa5s2bxzhikuW0rapjwKCgIEaH4lJfyti4cSNZWVmRtrY2+fv708KFC6WctimTYf/+/WRjY0MaGhrk6upKJ0+eZOmKypy2EREtWLCA6tWrRzo6OhQYGEg//PADffnllzVeF9u3bydLS0sSiUTk7e1NK1asUOi0jajCka5IJKI3b94wYTdv3qR27dqRpqYm2dvb05EjR8ja2prlfPbVq1c0fPhwMjY2Jk1NTWrevDmdOnWKiVekM0icEyri0KFD1LhxY+Z5Gz9+PEvGwsJC6tevH1lYWJBQKCRzc3Pq3bu3lNO2quN7YGAgWVtbk1AoJBMTE+ratavUmBYQEMCq+6pw0RVLSkpo7NixZGRkRKamprR48WIpnb+wsJAmT57MPDN2dna0Y8cOubLLIisri3r06EEikYjq1atHP/74I6tfktyflfs4LvrW27dvKTAwkAwMDMjIyIj69evHcsBMVNFfWFpa0qxZs2TKNnv2bLKzsyNNTU0yNDQkV1dXOnjwICtNXegNn/M8AM+nw8dy2iYgqrI5zL+c3Nxc6OvrI+3mTTi8p+l/aVER1gR8BwD4YfdvdbrMr6SkhLGgmTVrFrM0/N+MWFyA6EstAACd3O/UyR6+RUVFePDgARo1alTtfWXrGiJCRkExCsTK9+lz0tGEigILAhWAtxrn4all/vnnH1hZWeH8+fMKHZt9LJ4+fYpmzZrh5s2bUkvz/osUFBTA2NgYERERrD3leKrPjBkz8Pr1a2zZsqWuReHh+eh06tQJrVq1YlnP8/DIwsPDA2ZmZu/llLg2GDBgANq0aaN0Jc5/BXd3d3Tu3BmhoaF1Lcq/nrrQGz7neQCeTwfJvOTbt2+rvSVidfh8Nxzl4eGRCVVxplaVciJOk71aqipQEwj4CV0eno/MhQsXkJeXhxYtWuDJkyeYPn06bGxs8PXXX9e1aAAqtjnYvn07Hj58yE/4Arh48SK6dOnCT/bWAKamppgyZUpdi8HDw8PzyVBQUIBNmzbBy8sLqqqqOHDgAM6fP4/IyMi6Fo1h+fLl+OOPP+pajE+Ct2/fIjMzs1rbrPC8P7zewMOjGH7Cl4fnX0R1rHcBxRa8vPWuNIsWLZK5JyUAdOzYsdp7u/1XUOQBOiIi4r2dz9QFY8aMwa+//iozbsiQIZz2TFZGaWkpZs2ahb/++gu6urpwc3PDvn37Pimnm3379q1rET4ZevbsiZ49e9a1GP8Kfvzxx7oWgYfnvfgYY0Nd8/DhQ4WOnJKTkxknoJ8DPXr0QExMjMw4if+TTwGBQIDTp09j4cKFKCoqgqOjI44ePfrejrpqAxsbG0ycOLGuxfgk0NfX5+S/gqdm4PUGHh7F8BO+PDyfETVlvQvwFrzvw5gxYzBw4ECZcZWdUfCwUeTVukGDBh9PkBpgwYIFmDp1qsy4mlqO4+XlBS8vrxrJi4eHh4en9qmJsSE6OroGJap5LCwsFI7nFhYWH0+YGmDbtm0oLCyUGWdkZPSRpZGPSCTC+fPn61oMHh4eHp7PEH7Cl4fnM6EmrXcB3oL3fTAyMvqkXgI+F+zs7OpahBrD1NQUpqamdS0GDw8PD88nxH9hbFBTU/tXjeef2wdnHh4eHh6e6sJP+PLwfASUWeZygbfe5eHh4eHh4eHh4eHh4eHh4eFRBj/hy8NTy1TXMpcLvPUuDw8PDw8PDw8PDw8PDw8PD48s+AlfHp5aphyo0cle3nqXh4eHh4eHh4eHh4eHh4eHh0ce/ISvDIgIZcXFcuNLi4s+ojQ8/yaUWeZygbfe5eHh4eHh4eHh4eHh4eHh4eGRBz/hWwUiwsF50/E4PaWuReH5F6IiEECVn6zl4eHh4eHh4eHh4eHh4eHh4aklVOpagE+NsuJizpO9Fo5OUNPQqGWJeHh4eGoXGxsbrFq1ivktEAhw4sQJuemzsrIgEAiQmJhY67JxZdeuXTAwMPho16taB9HR0RAIBHjz5s1Hk0EeXGWJiopC06ZNIRaLP45gPDz/z6ZNm+Dt7V3XYvD8S/mU+mMACA0NRatWrZjfw4YNQ9++fRWe06lTJ0yaNKlW5aouynSDT5Gq98LH1hUUwVWW7du3w9PTs/YF4uGpRElJCWxsbHDjxo26FoWHh+cD4Cd8FTB2y6/4Yfdvco9B85fyS+v/AxAR8sVi1lEgFqOcCGIORzlRXReBxbBhwyD4/z2AKx8ZGRl1LRpnPseXDuDTewmVx5MnT9CjR4+6FuODOHbsGDw8PGBiYgI9PT24urri7NmztXY9Nzc3PHnyBPr6+rV2jZpm+vTpmDNnDlRVVetaFIbS0lIsWLAAtra20NTURMuWLXHmzBlWGhsbG5l92Pjx4zld4+DBgxAIBEonXD5lcnJy4OfnBz09PRgYGGDEiBHIy8tTeE5mZib69evHPBMDBw7Es2fPWGlu3rwJDw8PGBgYwNjYGKNHj5bK94cffkDbtm2hoaHBmsSqzOHDh9GqVStoaWnB2toay5cvZ8UHBgbi5s2biImJqX7heeTy4sULjB07Fg0bNoSGhgbMzMzg5eWF2NhYJo2s58fS0rIOpf7vsXr1auzatauuxfggsrKyMGLECDRq1AgikQi2trYICQlBSUlJXYumEB8fH6Snp9e1GJwpKirC3LlzERISUteisHj37h0mTZoEa2triEQiuLm54fr166w0oaGhaNKkCbS1tWFoaIhu3bohPj5ead7r16+HjY0NNDU10b59e1y7dq22ilHrPHz4ED179oSWlhZMTU0xbdo0lJWVKTxH2Ti8a9cumTqQQCDA8+fPAfzvfaPq8fTpUyaf0NBQqfgmTZow8UKhEFOnTsWMGTNquFZ4eHg+JvyErwLUNTShrin/4Cd7//0QEXrfzIDt5Tusw/NGOrKLS3E/vwh33xUqPJLzPr09n7t3744nT56wjkaNGtW1WDyfCGZmZtD4zFcvXL58GR4eHjh9+jQSEhLQuXNneHt749atW7VyPaFQCDMzs89mXLhy5QoyMzPRv3//uhaFxZw5c7B582asXbsWycnJGDNmDPr168dqt+vXr7P6rsjISADAgAEDlOaflZWFqVOnomPHjrVWho+Bn58f7t27h8jISJw6dQqXL1/G6NGj5abPz8+Hp6cnBAIBLly4gNjYWJSUlMDb2xvl5RVORR8/foxu3brBzs4O8fHxOHPmDO7du4dhw4ZJ5RcYGAgfHx+Z14qIiICfnx/GjBmDu3fvYsOGDVi5ciXWrVvHpBEKhRg8eDDWrFnzYRXBw6J///64desWdu/ejfT0dJw8eRKdOnXCq1evWOkWLFjAeoZqq1/kkY2+vv4nY2X6vqSmpqK8vBybN2/GvXv3sHLlSmzatAmzZs2qa9EUIhKJYGpqWtdicOa3336Dnp4eOnToUNeisBg5ciQiIyOxd+9e3LlzB56enujWrRuys7OZNA4ODli3bh3u3LmDK1euwMbGBp6ennjx4oXcfA8dOoQpU6YgJCQEN2/eRMuWLeHl5cVMZH5OiMVi9OzZEyUlJfjzzz+xe/du7Nq1C/PmzZN7Dpdx2MfHR+odzsvLC+7u7lL3dlpaGitd1fhmzZqx4q9cucKK9/Pzw5UrV3Dv3r0PrxAeHp66gf5jvH37lgBQ2s2bMuNLCgtpxcCetGJgTyopLPzI0lWf4uJiCgkJoZCQECouLq5rcT4KZWX5dD6qMZ2PakxlZfkflFd5eTnllZXJPZ4Xl1D9C7ekjrbRN+nszUS69SKHEt/mczrS8wqpvLy8hmrh/QkICKA+ffrIjAsLC6PmzZuTlpYWWVpa0tixY+ndu3esNFeuXCF3d3cSiURkYGBAnp6elJOTQ0REYrGYFi1aRDY2NqSpqUnOzs505MgR5tyLFy8SADp//jy1bduWRCIRubq6UmpqKusaJ06coNatW5OGhgY1atSIQkNDqbS0lIiIrK2tCQBzWFtbKyzvgwcPSCAQ0PXr11nhK1eupIYNG5JYLKadO3eSvr4+K/748eNUuYsMCQmhli1b0p49e8ja2pr09PTIx8eHcnNzmTSKyv/gwQOW3AAoICBAoexc6pSL7EREJ0+epHbt2pGGhgYZGxtT3759mThra2tauXIl8xsAHT9+nPkdHx9PrVq1Ig0NDWrbti0dO3aMANCtW7eYNHfu3KHu3buTtrY2mZqa0pAhQ+jFixdMfEREBHXo0IH09fXJyMiIevbsSRkZGUy8pH6OHj1KnTp1IpFIRM7OzvTnn38qrSN59VAVJycnmj9/Pqf8uMorqQPJvf369WsmzZYtW8jS0pJEIhH17duXwsLCWDJ+6D0lITw8nOzt7UlTU5M6depEO3fulJKlKuPHj6fvvvuOFZaRkUG9e/cmU1NT0tbWpnbt2lFkZCQrTVFREU2fPp0sLS1JKBSSra0tbdu2jYm/e/cu9ezZk3R1dUlHR4e++uorVr0pw9zcnNatW8cK+/bbb8nPz0/uOUFBQWRra6u0fy0rKyM3Nzfatm2bwn5QEdOnTyd7e3sSiUTUqFEjmjNnDpWUlDDxsvINCgoid3d35rdYLKalS5eSra0tCYVCsrKyop9//pmzDMnJyQSA1adFRESQQCCg7OxsmeecPXuWVFRU6O3bt0zYmzdvSCAQMG28efNmMjU1JbFYzKS5ffs2AaD79+9L5Sm5f6vi6+srdW+tWbOGLC0tWW106dIlEgqFVFBQwK3gPAp5/fo1AaDo6GiF6ar29xLKysooMDCQ6WscHBxo1apVUum2b99OTk5OJBQKyczMjMaPH8+SYcSIEVSvXj3S1dWlzp07U2JiIif5ExMTqVOnTqSjo0O6urrUpk0b5h7PysqiXr16kYGBAWlpaZGTkxOFh4cz575PH1iZmJgY+uqrr0hTU5MsLS1p4sSJlJeXx8RXHROJiPT19Wnnzp3M70ePHtGgQYPI0NCQtLS0qG3btnT16lUikn5WqvYTeXl5NHToUNLW1iYzMzNasWIFubu7U1BQEJOmqKiIfvzxR7KwsCAtLS1ycXGhixcvMvEvX76kQYMGkYWFBYlEImrevDnt37+fJbO7uztNnDiRpk2bRoaGhlS/fn0KCQnhVEfy6qEyy5Yto0aNGnHKS1b/sXLlSpZOJ6mn5cuXk5mZGRkZGdG4ceNYfe6ePXuobdu2pKOjQ/Xr1ydfX1969uwZE191bJalK/z0009kYmJCOjo6NGLECJoxY4bM9lIkh7L2kVzbysqK0QlWrFihVG/p2bMnTZ06lRV27do16tatGxkbG5Oenh59/fXXlJCQwErz+vVrGj16NJmampKGhgY1a9aM/vjjDyZekS6vjIKCAlJVVaVTp06xwtu0aUOzZ8+We57kHfz8+fNy07i4uLD6FLFYTBYWFrR48WJOshFx68uqPl9ERH369GHp5cr0HWWcPn2aVFRU6OnTp0zYxo0bSU9PT+47e3XHYSKi58+fk7q6Ou3Zs4cJk6WTVkXeGF6Vzp0705w5c5Sm+y9RWFhIycnJVPgZzBXxfLpI+sTKunltwFv48vxnITnWu5WPFrH/+6J5p0MzZH7dAplft8C5dg5ooKEOe21NNNcVVRw6mmiuUS73sFMrg6C0ACjJr/mjhraNUFFRwZo1a3Dv3j3s3r0bFy5cwPTp05n4xMREdO3aFU5OToiLi8OVK1fg7e3N7AG6ePFi7NmzB5s2bcK9e/cwefJkDBkyBJcuXWJdZ/bs2QgLC8ONGzegpqaGwMBAJi4mJgb+/v4ICgpCcnIyNm/ejF27dmHhwoUAwCwZ27lzJ548eSK1hKwqNjY26NatG3bu3MkK37lzJ4YNGwYVFe7dYGZmJk6cOIFTp07h1KlTuHTpEpYsWcLEKyq/lZUVjh49CuB/X9xXr16t9Jpc61QR4eHh6NevH7755hvcunULUVFRcHFx4XRuXl4eevXqBScnJyQkJCA0NBRTp05lpXnz5g26dOmC1q1b48aNGzhz5gyePXuGgQMHMmny8/MxZcoU3LhxA1FRUVBRUUG/fv0Y60IJs2fPxtSpU5GYmAgHBwf4+voqXf7GhfLycrx79w5GRkac0nOVVx6xsbEYM2YMgoKCkJiYCA8PD+YersyH3FMA8OjRI3z77bfw9vZGYmIiRo4ciZkzZyqVLyYmBu3atWOF5eXl4ZtvvkFUVBRu3bqF7t27w9vbGw8fPmTS+Pv748CBA1izZg1SUlKwefNm6OjoAACys7Px9ddfQ0NDAxcuXEBCQgICAwOZ9pMsMczKypIrV3FxMTQ1NVlhIpFIyupEQklJCX799VcEBgYqta5esGABTE1NMWLECIXpFKGrq4tdu3YhOTkZq1evxtatW7Fy5cpq5REcHIwlS5Zg7ty5SE5Oxv79+1G/fn0mvlOnTjKtaiXExcXBwMCA1X7dunWDioqK3OWyxcXFEAgELMt9TU1NqKioMHVbXFwMoVDI6hNFIhEAyK1/edeS1Yb//PMP/v77byasXbt2KCsr47TEt64hIpSXiOvkII7ju46ODnR0dHDixAkUFxdXu4zl5eWwtLTEkSNHkJycjHnz5mHWrFk4fPgwk2bjxo0YP348Ro8ejTt37uDkyZOws7Nj4gcMGIDnz58jIiICCQkJaNOmDbp27YqcnByl1/fz84OlpSWuX7+OhIQEzJw5E+rq6gCA8ePHo7i4GJcvX8adO3ewdOlSpt953z5QQmZmJrp3747+/fvj9u3bOHToEK5cuYIJEyZwziMvLw/u7u7Izs7GyZMnkZSUhOnTp3MeL6ZNm4ZLly7h999/x7lz5xAdHY2bN2+y0kyYMAFxcXE4ePAgbt++jQEDBqB79+64f/8+gIql/23btkV4eDju3r2L0aNHY+jQoVLL4Xfv3g1tbW3Ex8dj2bJlWLBgAbNK4kN5+/Yt5zGWKxcvXkRmZiYuXrzIWEhW3g6jtLQUP/30E5KSknDixAlkZWUp7D+rsm/fPixcuBBLly5FQkICGjZsiI0bN1ZbDmXtEx8fjxEjRmDChAlITExE586d8fPPPyuV78qVK1Jj9bt37xAQEIArV67g6tWrsLe3xzfffIN3794BqHiWe/TogdjYWPz6669ITk7GkiVLmO2blOnyki0D5FFWVgaxWFztsXrLli3Q19dHy5Yt5aZJSEhAt27dmDAVFRV069YNcXFxSmrqf3Dpy7igSN8BKt4vQkND5Z4fFxeHFi1asMZ3Ly8v5ObmyrWYfZ9xeM+ePdDS0sJ3330nFdeqVSuYm5vDw8ODtbWPhPv378PCwgKNGzeGn58fS9+T4OLiwm+/xMPzOVOr08mfILyF7+dPTVn45pWVybTelXV4J6SzLJNkftkrziMK0aubozhPRgllExAQQKqqqqStrc0cVa2xJBw5coSMjY2Z376+vtShQweZaYuKikhLS0vKInPEiBHk6+tLRGwLXwnh4eEEgKnLrl270qJFi1h57N27l8zNzZnfUGJlUpVDhw6RoaEhFRUVERFRQkICCQQCevDgARFxs5INCQkhLS0tlvXltGnTqH379tUuP1erIy55cpHd1dVVoYWkIgvfzZs3k7GxMete37hxI8u69aeffiJPT09Wno8eParoa9PSZF7zxYsXBIDu3LlDRP+zmK1sPXHv3j0CQCkpKXJll6DMwnfp0qVkaGjIsvypDvLklWfh6+PjQz179mTl4efnJ2Xh+6H3VHBwMDk5ObHiZ8yYofQ+09fXZ1mDyKNZs2a0du1aIiJKS0sjAFJWvxKCg4OpUaNGLKunysTHx5OjoyP9888/cq/n6+tLTk5OlJ6eTmKxmM6dO0cikYiEQqHM9IcOHSJVVVW5lq0SYmJiqEGDBozV+fta+FZl+fLl1LZtW+a3Mgvf3Nxc0tDQoK1bt8rNc+jQoTRz5ky58QsXLiQHBwepcBMTE9qwYYPMc54/f056enoUFBRE+fn5lJeXRxMmTCAANHr0aCKqsM5WU1OjZcuWUXFxMeXk5FD//v0JgFSfTCTfOmjz5s2kpaVF58+fJ7FYTGlpadSkSRMCIHUvGxoa0q5du+SW9VNBXFxGj2ZcrpNDXFzGWc7ffvuNDA0NSVNTk9zc3Cg4OJiSkpJYaaytrUkoFLJ0gNWrV8vMb/z48dS/f3/mt4WFhVwLvpiYGNLT02PGWQm2tra0efNmpbLr6urKvRdatGhBoaGhMuPetw+UMGLECOYZkBATE0MqKirMuCdL56hs4bt582bS1dWlV69eybyGIgvfd+/ekVAopMOHDzPxr169IpFIxFgg/v333zL7ua5du1JwcLDcsvXs2ZN+/PFH5re7uzt99dVXrDRffPEFzZgxQ24elVGke92/f5/09PRoy5YtnPLiauFrbW1NZWX/ewYGDBhAPj4+cvO9fv06AWBWpymz8G3fvj3LopSIqEOHDlLtpUgOLu3j6+tL33zzDSvex8dHod4isdq/fPmy3DREFVawurq6jAWvZEWHPP1LkS5PRHTs2DFydHRUeE1XV1dyd3en7OxsKisro71795KKiorU2PTHH3+QtrY2CQQCsrCwoGvXrsnNMzs7W+Y4MW3aNHJxcVEojzKq9mXKLHyV6TtERF26dGH0I1mMGjVKSjfOz88nAHT69GmZ51R3HCYiatq0KY0dO5YVlpqaSps2baIbN25QbGwsDR8+nNTU1FiW4KdPn6bDhw9TUlISnTlzhlxdXalhw4YsnZSIaPXq1WRjYyO3nP9FeAtfnprgY1n4qtX+lDIPz6fPnQ7NoKUq39JTS0Xls9mbkwudO3dmWTBoa2sDAM6fP4/FixcjNTUVubm5KCsrQ1FREQoKCqClpYXExES5+2RmZGSgoKAAHh4erPCSkhK0bt2aFebs7Mz8b25uDgB4/vw5GjZsiKSkJMTGxrKsIcViMUuO6tK3b1+MHz8ex48fx6BBg7Br1y507twZNjY21crHxsYGurq6LNkl+4pVp/xcqak8ExMTMWrUqPeSISUlBc7OzixLDldXV1aapKQkXLx4kWX5ICEzMxMODg64f/8+5s2bh/j4eLx8+ZKxfHr48CGaN2/OpJd3b1R2JFFd9u/fj/nz5+P333/nvHcfV3nlkZaWhn79+rHCXFxccOrUKVbYh95TKSkpaN++PSu+avvIorCwUMo6Jy8vD6GhoQgPD8eTJ09QVlaGwsJCxuIjMTERqqqqcHd3l5lnYmIiOnbsyFjlVcXFxQWpqakK5Vq9ejVGjRqFJk2aQCAQwNbWFsOHD8eOHTtkpt++fTt69OgBCwsLuXm+e/cOQ4cOxdatW1GvXj2F11fGoUOHsGbNGmRmZiIvLw9lZWXQ09PjfH5KSgqKi4vRtWtXuWn27NnzQTLKwsTEBEeOHMHYsWOxZs0aqKiowNfXF23atGEsiZo1a4bdu3djypQpCA4OhqqqKn744QfUr1+/WishRo0ahczMTPTq1QulpaXQ09NDUFAQQkNDpfIRiUQoKCio0bL+l+nfvz969uyJmJgYXL16FREREVi2bBm2bdvGsnqcNm0a67fkuVi/fj127NiBhw8forCwECUlJYxjvufPn+Px48dy792kpCTk5eXB2NiYFV5YWIjMzEylsk+ZMgUjR47E3r170a1bNwwYMAC2trYAKhwFjh07FufOnUO3bt3Qv39/Zqx43z6wsty3b9/Gvn37mDAiQnl5OR48eICmTZsqzSMxMRGtW7d+L+vWzMxMlJSUsMpgZGQER0dH5vedO3cgFovh4ODAOre4uJipb7FYjEWLFuHw4cPIzs5GSUkJiouLpXSmymMswB5z3pfs7Gx0794dAwYMeG9dQx7NmjVjORY1NzfHnTt3mN+SlUdJSUl4/fo1a6x2cnJSmn9aWhrGjRvHCnNxccGFCxc4y8GlfVJSUqR0AldXVymnpJUpLCwEAKmx+tmzZ5gzZw6io6Px/PlziMViFBQUsMZqS0tLKXkkKNLlAaBfv35SslZl7969CAwMRIMGDaCqqoo2bdrA19cXCQkJrHSdO3dGYmIiXr58ia1bt2LgwIGIj4+v9X2UFfVlXFCm7wBAVFRUDUjKprrjcFxcHFJSUrB3715WuKOjI6sPcXNzQ2ZmJlauXMmkreyc2dnZGe3bt4e1tTUOHz7MWgnFj9M8PJ83/IQvDw8ALVUVaH+op3p1LWDW45oR6H2uXQ20tbVZyzCBCmdGvXr1wtixY7Fw4UIYGRnhypUrGDFiBEpKSqClpcUsK5KFxINseHg4GjRowIqr6gCs8oSQZCJdoqTn5eVh/vz5+Pbbb6WuUVXp5YpQKIS/vz927tyJb7/9Fvv372dtp6CioiK1bLa0tFQqn6oTWQKBgCU3wK38XOGSJxfZFbVbTZCXlwdvb28sXbpUKk4yaevt7Q1ra2ts3boVFhYWKC8vR/PmzaU8eiu6N96HgwcPYuTIkThy5AhrmaAyuMr7oXzse0pCvXr18Pr1a1bY1KlTERkZiRUrVsDOzg4ikQjfffcdU2Zl91FN3GcmJiY4ceIEioqK8OrVK1hYWGDmzJlo3LixVNq///4b58+fx7FjxxTmmZmZiaysLHh7ezNhkjpWU1NDWloaM7GkiLi4OPj5+WH+/Pnw8vKCvr4+Dh48iLCwMCaNsuexJurIzMxMaoKmrKwMOTk5MDMzk3uep6cnMjMz8fLlS6ipqcHAwABmZmasuh08eDAGDx6MZ8+eQVtbGwKBAL/88ovM+peHQCDA0qVLsWjRIjx9+hQmJibMi3HVfHJycmBiYsI577pCoK4CiwVudXbt6qCpqQkPDw94eHhg7ty5GDlyJEJCQqQmeKvqAAcPHsTUqVMRFhYGV1dX6OrqYvny5cyWG8ru3by8PJibmyM6OloqjouDstDQUAwePBjh4eGIiIhASEgIDh48iH79+mHkyJHw8vJCeHg4zp07h8WLFyMsLAwTJ05Umq8y8vLy8P333+OHH36QimvYsCGAinu6tp9rZTKqqqoiISGBNekIgPnQunz5cqxevRqrVq1CixYtoK2tjUmTJikcYwH2mPM+PH78GJ07d4abmxu2bNnC+bya0Lvy8/Ph5eUFLy8v7Nu3DyYmJnj48CG8vLw++litrH3eB2NjYwgEAqmxOiAgAK9evcLq1athbW0NDQ0NuLq6ftSx2tbWFpcuXUJ+fj5yc3Nhbm4OHx8fqT5e8r5hZ2eHL7/8Evb29ti+fTuCg4Ol8qxXrx5UVVXx7NkzVvizZ88Ujm1VUdaXAR9vrK66pYqkbIrKU51xeNu2bWjVqhXatm2rVB4XFxeF2zMZGBjAwcEBGRkZrPDPZZzm4eGRzX92wldcWoLSoiKp8NJi6bC6hIhkKkASalqh+TdBRChQoMQWiN9fwZWJQAAItWs2z49IQkICysvLERYWxnxFrrrflbOzM6KiojB//nyp852cnKChoYGHDx8q/CKujDZt2iAtLU3qZbQy6urqzF5jXBk5ciSaN2+ODRs2oKysjDWhbGJignfv3iE/P5+xdk5MTKxW/lzKLxQKAYCz7Fzy5CK7pN2GDx/OsTT/o2nTpti7dy+KioqYCferV6+y0rRp0wZHjx6FjY0N1NSkh5VXr14hLS0NW7duRceOHQFUb0/Q9+XAgQMIDAzEwYMH0bNnT87n1YS8jo6OUvtLK9tvuipc2r9p06Y4efIkK6xq+8iidevWSE5OZoXFxsZi2LBhjGVPXl4ea7/dFi1aoLy8HJcuXZI5ee7s7Izdu3ejtLRUrpUvVzQ1NdGgQQOUlpbi6NGjrP2gJezcuROmpqZK27ZJkyYsizAAmDNnDt69e4fVq1fDysqKk0x//vknrK2tMXv2bCas8p60QMXzePfuXVZYYmIiUx/29vYQiUSIiorCyJEjOV23Kq6urnjz5g0SEhKYl7wLFy6gvLxcytJRFhJrzgsXLuD58+fo3bu3VBrJnoM7duxgJhCri6qqKvOh4sCBA3B1dWW9NGZmZqKoqOi9V0B8TAQCAQTCD/woXEc4OTnhxIkTStPFxsbCzc2NZe1Y2TJXV1cXNjY2iIqKQufOnaXOb9OmDZ4+fQo1NbVqr56R4ODgAAcHB0yePBm+vr7YuXMn0x9ZWVlhzJgxGDNmDIKDg7F161ZMnDjxvfvAynInJycr1DlMTEzw5MkT5vf9+/dZFm/Ozs7Ytm0bcnJyqm3la2trC3V1dcTHxzMTzK9fv0Z6ejrT77du3RpisRjPnz9nxqSqxMbGok+fPhgyZAiAio9a6enpnKxc35fs7Gx07twZbdu2xc6dO6u1EsDExARPnz4FETEfd6urd6WmpuLVq1dYsmQJ04/fuHGjWnlIxmp/f38mrLpjNZf2adq0qdR+5cruU6FQCCcnJyQnJ8PT05MJj42NxYYNG/DNN98AqNjH+uXLl0y8s7Mz/vnnH6Snp8u08lWky1cXbW1taGtr4/Xr1zh79iyWLVumMH15ebncPcaFQiHatm2LqKgo9O3bl0kfFRVVrT21lfVlgPQzLRaLcffuXaZvU6bvcMHV1RULFy7E8+fPGYvmyMhI6OnpcXoulY3DeXl5OHz4MBYvXsxJnsTERMYIQxZ5eXnIzMzE0KFDWeF37979LMZpHh4e2fxnJ3x/X/oT1D/x0hMRduzYgUePHtW1KB8dRZO15eJyFKHCuq1AXA4VyJg8I6DPrQzczSusTTH/VdjZ2aG0tBRr166Ft7c3YmNjsWnTJlaa4OBgtGjRAuPGjcOYMWMgFApx8eJFDBgwAPXq1cPUqVMxefJklJeX46uvvsLbt28RGxsLPT09BAQEcJJj3rx56NWrFxo2bIjvvvsOKioqSEpKwt27dxkHF5KXzg4dOkBDQwOGhoZK823atCm+/PJLzJgxA4GBgayv9+3bt4eWlhZmzZqFH374AfHx8SxnHFzQ1dVVWn5ra2sIBAKcOnUK33zzDUQikULrDy55cpE9JCQEXbt2ha2tLQYNGoSysjKcPn0aM2bMUFquwYMHY/bs2Rg1ahSCg4ORlZWFFStWsNKMHz8eW7duha+vL6ZPnw4jIyNkZGTg4MGD2LZtGwwNDWFsbIwtW7bA3NwcDx8+rJZTnfdh//79CAgIwOrVq9G+fXs8ffoUQIXVhr6+vsJza0LeiRMn4uuvv8Yvv/wCb29vXLhwAREREdXaGoZL+48ZMwZhYWGYNm0aRo4ciYSEBE73rpeXF3bv3s0Ks7e3x7Fjx+Dt7Q2BQIC5c+eyLL9sbGwQEBCAwMBArFmzBi1btsTff/+N58+fY+DAgZgwYQLWrl2LQYMGITg4GPr6+rh69SpcXFzg6OiIa9euwd/fH1FRUVIWyxLi4+ORnZ2NVq1aITs7G6GhoSgvL2c5jwQqXgJ37tyJgIAAmR8Z/P390aBBAyxevBiamppS23BILA65bM9RuX4ePnyIgwcP4osvvkB4eDiOHz/OStOlSxcsX74ce/bsgaurK3799VfWy5KmpiZmzJiB6dOnQygUokOHDnjx4gXu3bvHLKGsLLssmjZtiu7du2PUqFHYtGkTSktLMWHCBAwaNIjZ2iI7Oxtdu3bFnj17GAeNO3fuRNOmTWFiYoK4uDgEBQVh8uTJrGWf69atg5ubG3R0dBAZGYlp06ZhyZIlLAvNjIwM5OXl4enTpygsLGQmaZycnCAUCvHy5Uv89ttv6NSpE4qKirBz504cOXJEytFkTEwMGjduzMm6mkc5r169woABAxAYGAhnZ2fo6urixo0bWLZsGfr06aP0fHt7e+zZswdnz55Fo0aNsHfvXly/fh2NGjVi0oSGhmLMmDEwNTVFjx498O7dO8TGxmLixIno1q0bXF1d0bdvXyxbtgwODg54/Pgx4zS0quOpyhQWFmLatGn47rvv0KhRI/zzzz+4fv06+vfvDwCYNGkSevToAQcHB7x+/RoXL15ktlp43z5QwowZM/Dll19iwoQJGDlyJLS1tZGcnIzIyEisW7cOQMVzvW7dOri6ukIsFmPGjBmsj1q+vr5YtGgR+vbti8WLF8Pc3By3bt2ChYWF0u0ldHR0MGLECEybNg3GxsYwNTXF7NmzWZOnDg4O8PPzg7+/P8LCwtC6dWu8ePECUVFRcHZ2Rs+ePWFvb4/ffvsNf/75JwwNDfHLL7/g2bNntTbhm52djU6dOsHa2horVqzAixcvmDgu1pidOnXCixcvsGzZMnz33Xc4c+YMIiIiqrVFTsOGDSEUCrF27VqMGTMGd+/exU8//VStckycOBGjRo1Cu3bt4ObmhkOHDuH27dvVWtXApX1++OEHdOjQAStWrECfPn1w9uxZhds5SPDy8sKVK1cwadIkJsze3h579+5Fu3btkJubi2nTprF0Wnd3d3z99dfo378/fvnlF9jZ2SE1NRUCgQDdu3dXqssfP34cwcHBCrdgOnv2LIgIjo6OyMjIwLRp09CkSRPGsCA/Px8LFy5E7969YW5ujpcvX2L9+vXIzs5mbSfRtWtX9OvXj5nQnTJlCgICAtCuXTu4uLhg1apVyM/Pr5bBApe+rEuXLpgyZQrCw8Nha2uLX375BW/evGHilek7smSviqenJ5ycnDB06FAsW7YMT58+xZw5czB+/HhmlZYsvYjLOAxUbDFVVlbGfOSpzKpVq9CoUSM0a9YMRUVF2LZtGy5cuIBz584xaaZOncqsZnv8+DFCQkKgqqoKX19fVl4xMTHVfq54eHg+IWp1h+BPEMnmyIu/7ck4Z5N17J87jeWkqy6o7JBN2bFt27Y6l7emKC8vp1430jk7VPvQo6pDNi58zpu1K3JW9Msvv5C5uTmJRCLy8vKiPXv2SDk+iY6OJjc3N9LQ0CADAwPy8vJi4svLy2nVqlXk6OhI6urqZGJiQl5eXnTp0iUiku207NatWwSAcaBGRHTmzBlyc3MjkUhEenp65OLiwnIEcvLkSbKzsyM1NTWWgw9lbN++nQDIdBpx/PhxsrOzI5FIRL169aItW7ZIOW1T5mBEWfmJiBYsWEBmZmYkEAgY5xCK4JKnMtmJiI4ePUqtWrUioVBI9erVo2+//ZaJU+S0jYgoLi6OWrZsSUKhkFq1akVHjx5lOSwjIkpPT6d+/fqRgYEBiUQiatKkCU2aNIl5tiIjI6lp06akoaFBzs7OFB0dzbpOVSdoRP9zWHLx4kWl9VTVEYu7uzsBkDq41Pn7yCvr3t6yZQs1aNCARCIR9e3bl37++WcyMzNj4mvqnvrjjz/Izs6ONDQ0qGPHjrRjxw6lDotevXpFmpqalJqayoQ9ePCAOnfuTCKRiKysrGjdunVSjk0KCwtp8uTJZG5uTkKhkOzs7GjHjh1MfFJSEnl6epKWlhbp6upSx44dKTMzk1VHlZ/1qkRHRzP1bmxsTEOHDpXpkO3s2bMKnQK6u7srbGtZ/WBISIjS/mTatGlkbGxMOjo65OPjQytXrpRyujNv3jyqX78+6evr0+TJk2nChAmM0zaiCgc7P//8M1lbW5O6ujo1bNiQ5YxFmexEFe3n6+tLOjo6pKenR8OHD2ecFBH97/6s/OzMmDGD6tevT+rq6mRvb09hYWFSY9/QoUPJyMiIhEIhOTs7y3TsJ+/ZkrTrixcv6MsvvyRtbW3S0tKirl270tWrV6Xy8fT0pMWLFyssJw93ioqKaObMmdSmTRvS19cnLS0tcnR0pDlz5lBBQQGTrmp/X/n8YcOGkb6+PhkYGNDYsWNp5syZUn3Upk2bmP7I3NycJk6cyMTl5ubSxIkTycLCgtTV1cnKyor8/Pzo4cOHCmUvLi6mQYMGkZWVFQmFQrKwsKAJEyYwOtaECRPI1taWNDQ0yMTEhIYOHUovX75kzn+fPrAy165dIw8PD9LR0SFtbW1ydnamhQsXMvHZ2dnk6elJ2traZG9vT6dPn2Y5bSMiysrKov79+5Oenh5paWlRu3btKD4+nogUO20jqnDcNmTIENLS0qL69evTsmXLpPrekpISmjdvHtnY2DB1369fP7p9+zYRVfQJffr0IR0dHTI1NaU5c+aQv78/6zrKHFUpo/IYuHPnTpn9QHVeLTdu3EhWVlakra1N/v7+tHDhQimnbYqcYBIR7d+/n2xsbEhDQ4NcXV3p5MmTCsdmWQ5eFyxYQPXq1SMdHR0KDAykH374gb788stqyaGsfYgqdFBLS0sSiUTk7e1NK1asUOi0jajCea1IJKI3b94wYTdv3qR27dqRpqYm2dvb05EjR6Se61evXtHw4cPJ2NiYNDU1qXnz5nTq1CkmXpEuL2lbRRw6dIgaN25MQqGQzMzMaPz48SwZCwsLqV+/fmRhYUFCoZDMzc2pd+/eUvq3tbU1hYSEsMLWrl1LDRs2JKFQSC4uLlLjR0BAAKvuq8KlLyspKaGxY8eSkZERmZqa0uLFi6WeBWX6jizZq5KVlUU9evQgkUhE9erVox9//JFKS0uZeFl6EZdxmKjCcd7gwYNlxi1dupRsbW1JU1OTjIyMqFOnTnThwgVWGh8fH6ZsDRo0IB8fH8rIyGCl+fPPP8nAwIA1hvB83vMAPJ8OH8tpm4CoygY2/3Jyc3Ohr6+P2zGX0aTdF3LTqWlo1LmTrpKSEixatAhAxVc4yXJwWairq9e5vDVFvlgM28t3lCfkQHMdEX5vbQcoqJr3cchWVFSEBw8eoFGjRu+9ryzPx+enn37CkSNHcPv27boWhec/yKhRo5CamoqYmJi6FgVAheOm3NxcbN68ua5F+SQICAiAQCCotnU/T/W5d+8eunTpgvT0dKUW9zw8PDwfEw8PD5iZmUk5wqorBgwYgDZt2sjc9/a/iLu7Ozp37ozQ0NC6FuVfj4+PD1q2bIlZs2bVtSifFPw8AE9NIJmXfPv2bbVWt1SXT3xTg9pDTSiE+mf0gAqFQoUTvp8KpGTfXC5U3lv3Todm0FJl7wlWLi7E5SsVS1S//uoaVFTlb6z/PpO5PP8+JHuRrlu3jtkWgoentlmxYgU8PDygra2NiIgI7N69Gxs2bKhrsRhmz56NDRs2oLy8vFp7L/4bISJER0d/lL2leYAnT55gz549/GQvDw9PnVJQUIBNmzbBy8sLqqqqOHDgAM6fP4/IyMi6Fo1h+fLl+OOPP+pajE+Ct2/fIjMzE+Hh4XUtyr+ekpIStGjRApMnT65rUXh4eD6A/+yEL0/NQ0TofTMD13PzayxPLVUVaFfxeCuGCjRRzMRX9YjL89+jWbNmUs6TJGzevBmRkZE4cOAA+vbti8DAwI8snXwePnyocH+95ORkxonLf50ePXrItYydNWtWtawPPla9X7t2DcuWLcO7d+/QuHFjrFmz5r0dddUGBgYGvNXG/yMQCOT2ITw1z/s6weH5fFE2Tvv5+dXKdWty7Pg3s2/fPnz//fcy46ytrXHv3r1q5fe51LtAIMDp06excOFCFBUVwdHREUePHv2k+igbGxtMnDixrsX4JNDX18c///xT12L8JxAKhZgzZ05di8HDw/OB8BO+PDVGQXl5jU72fqGnCQ0qgljMttAViwvknMHzX+X06dMoLS2VGVe/fn34+fl9ksu0LSwsFHqlljhg4gG2bduGwkLZThir6xX9Y9X74cOHayQfHh4ens8dZeN0bVGTY8e/md69e6N9+/Yy4yo7qOPK51LvIpEI58+fr2sxeHh4eHh4agV+wpenVpC1FQMDEcrLi+SeS0S4lRiA0rdJuHS5lgTk+VdhbW1d1yK8F2pqarCzs6trMT4LJN6LawK+3nl4eHg+LnU1Ttfk2PFvRldXF7q6ujWWH1/vPDw8PDw8dQ8/4VuHEJFcawegYu+czxVZWzEAFWVOuDkQb9/eVJqHsp139fXbQkVF/v69PDw8PDw8PDw8PDw8PDw8PDw8/zX4Cd86goiwY8cOPHr0qK5F+aiUlxdymuwFAB0dJ7Rtc1Cu0zUVFRHvkI2Hh4eHh4eHh4eHh4eHh4eHh6cS/IRvLaLIgrekpITzZK+VldV77Z/1qdPxq3ioqmrJjecndHl4eHh4eHh4eHh4eHh4eHh4eKoHP+FbS1THgnfq1KkQCoVy49XV1f+VE5+qqloKJ3x5eHh4eHh4eHh4eHh4eHh4eHh4qgc/4VtLlJaWcprstbKygra29r9yQpeHh4eHh4eHh4eHh4eHh4eHh4fn46JS1wL8F5g6dSpmzZol8wgMDOQne3l4/uVkZWVBIBAgMTGxrkUBAOzatQsGBgbM79DQULRq1UrhOcOGDUPfvn1rVa7qYmNjg1WrVtW1GNWi6r0QHR0NgUCAN2/e1Klc1ZElKioKTZs2hVgs/jiC8fD8P5s2bYK3t3ddi8HDUy2q9q1Vx+CaQiAQ4MSJEzWeb11SdZxXVsZPTd8Caq+95cHrGTw878+gQYMQFhZW12Lw8NQY/ITvR0AoFMo9+Mleno+Jt7c3unfvLjMuJiYGAoEAt2/fZsKOHj2KLl26wNDQECKRCI6OjggMDMStW7dY55aUlGD58uVo06YNtLW1oa+vj5YtW2LOnDl4/PixQpk6deoEgUAgdZSVlX14gXk4MXXqVERFRdW1GB9ETk4OJk6cCEdHR4hEIjRs2BA//PAD3r59W9eiKcTNzQ1PnjyBvr5+XYvCmenTp2POnDlQVVWta1EYSktLsWDBAtja2kJTUxMtW7bEmTNnpNJlZ2djyJAhMDY2hkgkQosWLXDjxg25+Q4bNkxm/9SsWbPaLE6tUVRUhPHjx8PY2Bg6Ojro378/nj17pvCcZ8+eYdiwYbCwsICWlha6d++O+/fvs9JkZmaiX79+MDExgZ6eHgYOHCg33+LiYrRq1UpqUqaoqAjDhg1DixYtoKamJvMDU2BgIG7evImYmJhql/2/wqNHjxAYGAgLCwsIhUJYW1sjKCgIr169qhN55D1DGRkZdSLPp4CPjw/S09NrPN8nT56gR48eNZ7vp8S/oYzHjh2Dh4cH01+6urri7NmztXY9Xs+oGeS9r/Ts2ZNJk5eXhwkTJsDS0hIikQhOTk7YtGnTB+f7OZGTkwM/Pz/o6enBwMAAI0aMQF5ensJznj59iqFDh8LMzAza2tpo06YNjh49ykpjY2MjVUdLlixhpTl8+DBatWoFLS0tWFtbY/ny5ax4Ls/enDlzsHDhwk/+/YGHhyv8hC9PrVAuLoRYXCDz4Kk7RowYgcjISPzzzz9ScTt37kS7du3g7OwMAJgxYwZ8fHzQqlUrnDx5Emlpadi/fz8aN26M4OBg5rzi4mJ4eHhg0aJFGDZsGC5fvow7d+5gzZo1ePnyJdauXatUrlGjRuHJkyesQ02N33HmY6GjowNjY+O6FuODePz4MR4/fowVK1bg7t272LVrF86cOYMRI0bUtWgKEQqFMDMz+2w+/l25cgWZmZno379/XYvCYs6cOdi8eTPWrl2L5ORkjBkzBv369WN9nHr9+jU6dOgAdXV1REREIDk5GWFhYTA0NJSb7+rVq1n90qNHj2BkZIQBAwZ8jGLVOJMnT8Yff/yBI0eO4NKlS3j8+DG+/fZbuemJCH379sVff/2F33//Hbdu3YK1tTW6deuG/Px8AEB+fj48PT0hEAhw4cIFxMbGoqSkBN7e3igvL5fKc/r06bCwsJAKF4vFEIlE+OGHH9CtWzeZ8giFQgwePBhr1qx5zxr4d/PXX3+hXbt2uH//Pg4cOICMjAxs2rQJUVFRcHV1RU5OTp3I1b17d6kxvlGjRnUiy6eASCSCqalpjedrZmYGDQ2NGs/3U+LfUMbLly/Dw8MDp0+fRkJCAjp37gxvb28pY4qagtczaoZjx46x+rC7d+9CVVWVpQ9MmTIFZ86cwa+//oqUlBRMmjQJEyZMwMmTJz8o388JPz8/3Lt3D5GRkTh16hQuX76M0aNHKzzH398faWlpOHnyJO7cuYNvv/0WAwcOlHomFixYwKqriRMnMnERERHw8/PDmDFjcPfuXWzYsAErV67EunXrmDRcnr3mzZvD1tYWv/76aw3VCA9PHUP/Md6+fUsAKDn+aq1ep7i4mEJCQigkJISKi4tr9VqfCnmlpVT/wi2qf+EWnYpqSuejGis8ysry61rk96awsJCSk5OpsLCwrkWpFqWlpVS/fn366aefWOHv3r0jHR0d2rhxIxERxcXFEQBavXq1zHzKy8uZ/xcvXkwqKip08+ZNpWll4e7uTkFBQTLjpk+fTvb29iQSiahRo0Y0Z84cKikpYaU5efIktWvXjjQ0NMjY2Jj69u3LxBUVFdGPP/5IFhYWpKWlRS4uLnTx4kWF8kjIysqiXr16kYGBAWlpaZGTkxOFh4cTEVFOTg4NHjyY6tWrR5qammRnZ0c7duxgzo2Pj6dWrVqRhoYGtW3blo4dO0YA6NatW5yufefOHerevTtpa2uTqakpDRkyhF68eMHEW1tb08qVK1nntGzZkkJCQpjfr1+/ptGjR5OpqSlpaGhQs2bN6I8//iAiop07d5K+vj6TNiQkhFq2bMn8Lisro8mTJ5O+vj4ZGRnRtGnTyN/fn/r06cOkEYvFtGjRIrKxsSFNTU1ydnamI0eOsPIIDAxk4h0cHGjVqlUsmQMCAqhPnz60fPlyMjMzIyMjIxo3bpxUG8tDVj1U5vDhwyQUCqm0tFRpXlXrhIjo+PHjVHmYlNTTnj17yNramvT09MjHx4dyc3OZNBEREdShQwem7nr27EkZGRlM/IMHD1j3wsWLFwkAvX79mkmzZcsWsrS0JJFIRH379qWwsDCZ7aVIDmXtQ0QUHh5O9vb2pKmpSZ06daKdO3dKyVKV8ePH03fffccKy8jIoN69e5OpqSlpa2tTu3btKDIykpWmqKiIpk+fTpaWliQUCsnW1pa2bdvGxN+9e5d69uxJurq6pKOjQ1999RWr3pRhbm5O69atY4V9++235Ofnx/yeMWMGffXVV5zzlMXx48dJIBBQVlZWtc4LCwuj5s2bk5aWFllaWtLYsWPp3bt3THzVZ5CIaOXKlWRtbc0K2759Ozk5OZFQKCQzMzMaP348ZxnevHlD6urqrPsgJSWFAFBcXJzMc9LS0ggA3b17lwkTi8VkYmJCW7duJSKis2fPkoqKCr19+5Z1LYFAIHUfnD59mpo0aUL37t1T2CdK+gZZXLp0iYRCIRUUFHAp9n+K7t27k6WlpVTdPHnyhLS0tGjMmDFMmLW1NS1YsIAGDRpEWlpaZGFhIfUMvX79mkaMGEH16tUjXV1d6ty5MyUmJjLxXPoiRW2p7LkgIrpy5Qq5u7uTSCQiAwMD8vT0pJycHCLi1s/JQ9L3njlzhlq1akWamprUuXNnevbsGXOf6urqkq+vL+Xn/09frYm+tep4w6UP5dJeAOj48eNE9L+x5sCBA+Tq6sroAdHR0axzlOkbilBWF1zGVSLFelzVcb5yGYm46VvKysh13D569Ch16tSJRCIROTs7059//smpnmTVQ1WcnJxo/vz5nPLj9Yy60TOqsnLlStLV1aW8vDwmrFmzZrRgwQJWujZt2tDs2bM/KF8uKHtnktUXBwUFkbu7O/NbLBbT0qVLydbWloRCIVlZWdHPP//MWYbk5GQCQNevX2fCIiIiSCAQUHZ2ttzztLW1ac+ePawwIyMjRs8gUq7z+/r6St03a9asIUtLS4XvorKevfnz5yvUFz/XeQCeTwvJvGRl/bk24C18eThDRHKtdsXiApSWcrcc0ddvCxUVUS1K+/EhIhSUFtTJQUScZFRTU4O/vz927drFOufIkSMQi8Xw9fUFABw4cAA6OjoYN26czHwqWwkcOHAAHh4eaN26tdK01UVXVxe7du1CcnIyVq9eja1bt2LlypVMfHh4OPr164dvvvkGt27dQlRUFFxcXJj4CRMmIC4uDgcPHsTt27cxYMAAmcuRZTF+/HgUFxczFstLly6Fjo4OAGDu3LlITk5GREQEUlJSsHHjRtSrVw9AxXKuXr16wcnJCQkJCQgNDcXUqVM5l/nNmzfo0qULWrdujRs3buDMmTN49uwZBg4cyDmP8vJy9OjRA7Gxsfj111+RnJyMJUuWcF4aFxYWhl27dmHHjh24cuUKcnJycPz4cVaaxYsXY8+ePdi0aRPu3buHyZMnY8iQIbh06RIjg6WlJY4cOYLk5GTMmzcPs2bNwuHDh1n5XLx4EZmZmbh48SJ2796NXbt2YdeuXZzLqoi3b99CT0+vRq3FMzMzceLECZw6dQqnTp3CpUuXWEvK8vPzMWXKFNy4cQNRUVFQUVFBv379ZFo6yiI2NhZjxoxBUFAQEhMT4eHhgYULF1ZbDmXt8+jRI3z77bfw9vZGYmIiRo4ciZkzZyqVLyYmBu3atWOF5eXl4ZtvvkFUVBRu3bqF7t27w9vbGw8fPmTS+Pv748CBA1izZg1SUlKwefNm5nnKzs7G119/DQ0NDVy4cAEJCQkIDAxktnWR7PmXlZUlV67i4mJoamqywkQiEa5cucL8PnnyJNq1a4cBAwbA1NQUrVu3xtatW5WWuTLbt29Ht27dYG1tXa3zVFRUsGbNGty7dw+7d+/GhQsXMH369GrlsXHjRowfPx6jR4/GnTt3cPLkSdjZ2THxw4YNQ6dOneSen5CQgNLSUpb1bJMmTdCwYUPExcXJPKe4uBgAWHWroqICDQ0Npm6Li4shEAhYVneamppQUVFh1f+zZ88watQo7N27F1paWtUqe2XatWuHsrIyxMfHv3ce1YWIUFJSUicH1/E9JycHZ8+exbhx4yASsfUrMzMz+Pn54dChQ6z8li9fjpYtW+LWrVuYOXMmgoKCEBkZycQPGDAAz58/R0REBBISEtCmTRt07dqVZSmsrC9ShLLnIjExEV27doWTkxPi4uJw5coVeHt7M/t6KuvnuBAaGop169bhzz//xKNHjzBw4ECsWrUK+/fvR3h4OM6dO8daqVQbfSuXPhRQ3l6ymDZtGn788UfcunULrq6u8Pb2Zrb3+FB9oybqX5kepwgu+haXMnIdt2fPno2pU6ciMTERDg4O8PX1rZHtx8rLy/Hu3TsYGRlxSs/rGXWjZ1Rl+/btGDRoELS1tZkwNzc3nDx5EtnZ2SAiXLx4Eenp6fD09PygfLmg7J2JC8HBwViyZAnznrN//37Ur1+fie/UqROGDRsm9/y4uDgYGBiw2q9bt25QUVFROGa7ubnh0KFDyMnJQXl5OQ4ePIiioiIpnWbJkiUwNjZG69atsXz5ctbzJ08P/Oeff/D333/LvK68Z8/FxQXXrl1jdCAens+aWp1O/gThLXzfj/Lycrp+4zuFFrunopoyFr6vC55RWVm+3EOZ1eenjqwve/kl+dR8V/M6OfJLuFtLSyy6Klu6duzYkYYMGcL87t69Ozk7O7POCwsLI21tbeZ48+YNERFpamrSDz/8wErbt29fJp2rq6tCedzd3UldXZ2V95QpU2SmXb58ObVt25b57erqyrLgq8zff/9NqqqqUl+Uu3btSsHBwQplIiJq0aIFhYaGyozz9vam4cOHy4zbvHkzGRsbs+6NjRs3crbw/emnn8jT05MV9ujRIwJAaWlpRKTcwldicSdJXxVlFr7m5ua0bNky5ndpaSlZWloylgFFRUWkpaUlZd0yYsQI8vX1lVu28ePHU//+/ZnfAQEBZG1tTWVlZUzYgAEDyMfHR24elVH0tf/FixfUsGFDmjVrFqe8uFr4amlpsSxcpk2bRu3bt5eb74sXLwgA3blzh4iUW974+PhQz549WXn4+flJtZciObi0T3BwMDk5ObHiZ8yYodTyRl9fX8oKQxbNmjWjtWvXEtH/rESrWuNICA4OpkaNGsm17I6PjydHR0f6559/5F7P19eXnJycKD09ncRiMZ07d45EIhEJhUImjYaGBmloaFBwcDDdvHmTNm/eTJqamrRr1y6l5SEiys7OJlVVVTp06BCn9Io4cuQIGRsbM7+5WPhaWFgotBKaOXMmDR06VG78vn37WPUh4YsvvqDp06fLPKekpIQaNmxIAwYMoJycHCouLqYlS5YQAKafev78Oenp6VFQUBDl5+dTXl4eTZgwgQDQ6NGjiahCh+jevTuzuqTqc1AVRVahRESGhoac260mqKzTfeyDqw559epVKevHyvzyyy8EgJ49e0ZEFf1n9+7dWWl8fHyoR48eREQUExNDenp6VFRUxEpja2tLmzdvJiJufWJAQACpqqqyxviqVlgSqj4Xvr6+1KFDB5lp33cckiDpe8+fP8+ELV68mABQZmYmE/b999+Tl5cX52ty6Vu5WHxW7kOJlLcXkWwL3yVLljDxkrF86dKlRMRN35AHl7rgMq4q0uMk5ZZn4ctF33qfMsobtytbi0pWKaSkpMiVXYKy9l66dCkZGhoyz2Z14fWMj6NnVE0PgOLj41nhRUVF5O/vTwBITU2NhEIh7d69m1OeivJ9H6q+Mymz8M3NzSUNDQ2WVW1Vhg4dSjNnzpQbv3DhQnJwcJAKNzExoQ0bNsg97/Xr1+Tp6cnUm56eHp09e5aVJiwsjC5evEhJSUm0ceNGMjAwoMmTJzPxmzdvJi0tLTp//jyJxWJKS0ujJk2aEAC51vjynr2kpCQCIHc1F2/hy1MTfCwLX36TTB5OlJcX4u3bm5zTq6sbQVWVv70+RZo0aQI3Nzfs2LEDnTp1QkZGBmJiYrBgwQKF5wUGBqJ3796Ij4/HkCFDFFodbdiwAfn5+VizZg0uX74MANi3bx++//57Jk1ERAQ6duwIoGK/p9mzZzNxEm/Ghw4dwpo1a5CZmYm8vDyUlZVBT0+PSZeYmIhRo0bJlOHOnTsQi8VwcHBghRcXF3Par/aHH37A2LFjce7cOXTr1g39+/dn9jceO3Ys+vfvj5s3b8LT0xN9+/aFm5sbACAlJQXOzs6sr8yurq5KrychKSkJFy9eZKwSKpOZmSlVHlkkJibC0tKSU9qqvH37Fk+ePEH79u2ZMDU1NbRr145p84yMDBQUFMDDw4N1bklJCcvSe/369dixYwcePnyIwsJClJSUoFWrVqxzmjVrxrI8Njc3x507d6otd2Vyc3PRs2dPODk5ITQ09IPyqoqNjQ10dXWZ3+bm5nj+/Dnz+/79+5g3bx7i4+Px8uVLxuLm4cOHaN68udL809LS0K9fP1aYi4sLTp06xVkOLu2TkpLCamOA231aWFgoZUGRl5eH0NBQhIeH48mTJygrK0NhYSFjeZOYmAhVVVW4u7vLzDMxMREdO3aEurq6zHgXFxekpqYqlGv16tUYNWoUmjRpAoFAAFtbWwwfPhw7duxg0pSXl6Ndu3ZYtGgRAKB169a4e/cuNm3ahICAAKVl3717NwwMDGQ6E1PG+fPnsXjxYqSmpiI3NxdlZWUoKipCQUEBJ2vX58+f4/Hjx+jatavcNIsXL662XMpQV1fHsWPHMGLECBgZGUFVVRXdunVDjx49mP7AxMQER44cwdixY7FmzRqoqKjA19cXbdq0gYpKxUKytWvX4t27d6z93z8EkUiEggLeJ4AsFI3NVan6zLu6umLVqlUAKsaivLw8qfGysLAQmZmZzG9lfSIAdO7cGRs3bmR+SyzXlD0XiYmJcvex5DoOKUMyrgNA/fr1oaWlhcaNG7PCrl27xvma79O3KutD5eVTub3kUfkcyViekpIC4MP0jZqqf0V6nDK46Ftcysh13K58r5ibmwOo6JubNGnyXvIDwP79+zF//nz8/vvvnPd15vWMutEzKrN9+3a0aNFCyhp97dq1uHr1Kk6ePAlra2tcvnwZ48ePh4WFhdy96bnkywVl70zKSElJQXFxsUI9Y8+ePdWWiwtz587FmzdvcP78edSrVw8nTpzAwIEDERMTgxYtWgCo2B9ZgrOzM4RCIb7//nssXrwYGhoaGDVqFDIzM9GrVy+UlpZCT08PQUFBCA0NZXSRyih69iSrZHg9g+ffAD8j954QEUpLS+XGl5SUfERpagYiQoGc5UDl4nIUoWK5ZgfXaKiqSr+gFojLgat/Vfz4TBwD1CQiNRHiB3+8JaZVr10dRowYgYkTJ2L9+vXYuXMnbG1tWUqSvb09rly5gtLSUkY5MjAwgIGBgZTDN3t7e6SlpbHCJIpw5SUyvXv3Zil+DRo0YP7X19dnLU0GKpYF+fn5Yf78+fDy8oK+vj4OHjyIsLCw/5VbJL/ceXl5UFVVRUJCgtRWBrIU/6qMHDkSXl5ezJLOxYsXIywsDBMnTkSPHj3w999/4/Tp04iMjETXrl0xfvx4rFixQmm+ysjLy4O3tzeWLl0qFSepVxUVFamX+sr9kaJ6qQkk3nbDw8NZ7QiAWdZ98OBBTJ06FWFhYXB1dYWuri6WL18utaSrqvItEAg4L0uUxbt379C9e3fo6uri+PHjcpX7qiirU67yent7w9raGlu3boWFhQXKy8vRvHnzGh8TFMnBpX3el3r16uH169essKlTpyIyMhIrVqyAnZ0dRCIRvvvuO6bMyu7HmrhfTUxMcOLECRQVFeHVq1ewsLDAzJkzWRM35ubmcHJyYp3XtGlTKU/QsiAi7NixA0OHDoVQKKyWbFlZWejVqxfGjh2LhQsXwsjICFeuXMGIESNQUlICLS2tj/JMm5mZoaSkBG/evGE+qgEVWy2YmZnJPa9t27ZITEzE27dvUVJSAhMTE7Rv3561ZNPT0xOZmZl4+fIl1NTUYGBgADMzM6b+L1y4gLi4OKn7r127dvDz88Pu3burVZacnByYmJhU65wPQV1dHbNmzfpo16t6bS7Y2dlBIBAgJSVFajIHqHiZNzQ05FxveXl5MDc3R3R0tFRc5fuHSx+ura0tNcZzeS6UjfHAh/dzleUXCAR10rcq60NrCy76hqJzAcV1wWVc/Rj6irIych23q94rAD5IXzl48CBGjhyJI0eOcJoMlMDrGXWjZ0jIz8/HwYMHpQxlCgsLMWvWLBw/fhw9e/YEUDExmZiYiBUrVihtY3n5coHLO9PH0jOqfvArKytDTk6OXD0jMzMT69atw927d9GsWTMAQMuWLRETE4P169dj06ZNMs9r3749ysrKkJWVBUdHRwgEAixduhSLFi3C06dPYWJigqioKABg6YKA8mdPsm3Rx9QzeHhqC37C9z2QvPg9evSorkWpMYgIvW9m4HpuvvxEgv0Vf68+/jhCfWYIBAJoqb//voQfk4EDByIoKAj79+/Hnj17MHbsWNZeu76+vli7di02bNiAoKAghXn5+vpizpw5uHXrlkKrDl1dXZalgDL+/PNPWFtbsyx/q+7B5OzsjKioKAwfPlzq/NatW0MsFuP58+eMJXF1sbKywpgxYzBmzBgEBwdj69atjEdYExMTBAQEICAgAB07dsS0adOwYsUKNG3aFHv37kVRURFjoXD16lXO12zTpg2OHj0KGxsbuXvPmpiY4MmTJ8zv3NxcPHjwgPnt7OyMf/75B+np6dW28tXX14e5uTni4+Px9ddfA6hQ1iT7NwKAk5MTNDQ08PDhQ7nWFLGxsXBzc2PtA13ZKqw2yM3NhZeXFzQ0NHDy5EkpCxFFmJiY4N27d8jPz2eszxITE6t1/VevXiEtLQ1bt25l7rnKe5hywdHREdevX2eFVf2tDC7t07RpUymv0Vzu09atWyM5OZkVFhsbi2HDhjGTTHl5eax98Fq0aIHy8nJcunRJpmLt7OyM3bt3sz4wvS+amppo0KABSktLcfToUdY+jR06dJD6OJWens5pP95Lly4hIyMDI0aMqLZMCQkJKC8vR1hYGGNlUnUvaxMTEzx9+hRExPTFle8/XV1d2NjYICoqCp07d662DEDFxK26ujqioqIY7+dpaWl4+PAhJ6srfX19ABXWZTdu3MBPP/0klUayl/mFCxfw/Plz9O7dGwCwZs0a/Pzzz0y6x48fw8vLC4cOHZKyAFNGZmYmioqKqmVF+KEIBIJqT/R/bIyNjeHh4YENGzZg8uTJrJf3p0+fYt++ffD392eN9VWf+atXr6Jp06YAKsaip0+fQk1NDTY2NjUuL5fnQjLGz58/X+p8Lv1cTVNbfauyPlRePpXbSx5Xr16VGssnTJgAgJu+IQ8udcFlXFWkxymDi76lrIw1MW6/DwcOHEBgYCAOHjzITA5ygdcz6l7POHLkCIqLizFkyBBWeGlpKUpLS6WsSVVVVTl9GJCXLxe4vDOZmJjg7t27rLDExESmPuzt7SESiRAVFYWRI0dWWwagwoL7zZs3SEhIQNu2bQFU6APl5eVyx3qJFW116y0xMREqKipS1rmqqqrMR4gDBw7A1dWVNXHL5dm7e/cuLC0tGZ2Gh+dzhnfa9h6UlpZynuy1srL64IHlY1BQXq54srcauOhrQ0vG0gmeTwcdHR34+PggODgYT548kdqA39XVFT/++CN+/PFHTJkyBVeuXMHff/+Nq1evYvv27RAIBMzAPHnyZLi6uqJr165YvXo1bt68iQcPHuDs2bOIiIjg7CisKvb29nj48CEOHjyIzMxMrFmzRspxWEhICA4cOICQkBCkpKQwztUAwMHBAX5+fvD398exY8fw4MEDXLt2DYsXL0Z4eLjS60+aNAlnz57FgwcPcPPmTVy8eJF5sZo3bx5+//13ZGRk4N69ezh16hQTN3jwYAgEAowaNQrJyck4ffp0tSx/x48fj5ycHPj6+uL69evIzMzE2bNnMXz4cMZRTZcuXbB3717ExMTgzp07CAgIYNWzu7s7vv76a/Tv3x+RkZF48OABIiIicObMGU4yBAUFYcmSJThx4gRSU1Mxbtw4vHnzhonX1dXF1KlTMXnyZOzevRuZmZm4efMm1q5dy1jq2dvb48aNGzh79izS09Mxd+7car9QVIfc3Fx4enoiPz8f27dvR25uLp4+fYqnT58y9aaI9u3bQ0tLC7NmzUJmZib2799fbedxhoaGMDY2xpYtW5CRkYELFy6wlqBxYeLEiTh9+jR++eUX3L9/H5s3b0ZERES1nB9yaZ8xY8bg/v37mDZtGtLS0jiX18vLS+rl0t7eHseOHUNiYiKSkpIwePBglpJuY2ODgIAABAYG4sSJE3jw4AGio6OZyZ0JEyYgNzcXgwYNwo0bN3D//n3s3buXmZy9du0amjRpguzsbLlyxcfH49ixY/jrr78QExOD7t27o7y8nOUAavLkybh69SoWLVqEjIwM7N+/H1u2bMH48eOZNMHBwfD395fKf/v27Wjfvj2n5bJVsbOzQ2lpKdauXYu//voLe/fulbJY6dSpE168eIFly5YhMzMT69evR0REBCtNaGgowsLCsGbNGty/f59pU2WyS9DX18eIESMwZcoUXLx4EQkJCRg+fDhcXV3x5ZdfMumaNGnC6muPHDmC6Oho/PXXX/j999/h4eGBvn37spzQ7Ny5E1evXkVmZiZ+/fVXDBgwAJMnT4ajoyMAoGHDhmjevDlzSD5E2drawtLSksknOTkZiYmJyMnJwdu3b5GYmCg1QRQTE4PGjRvD1tZWWdX/51i3bh2Ki4vh5eWFy5cv49GjRzhz5gw8PDzQoEEDKcdMsbGxWLZsGdLT07F+/XocOXKE+cjbrVs3uLq6om/fvjh37hyysrLw559/Yvbs2bhx48YHy8rluQgODsb169cxbtw43L59G6mpqdi4cSNevnzJqZ+raWqrb1XWh0pQ1F7yWL9+PY4fP47U1FSMHz8er1+/RmBgIABu+saH1AWXcVWRHqcMLvqWsjLWxLhdXfbv3w9/f3+EhYWhffv2jK7y9u1bpefyekbd6RkStm/fjr59+0ptd6Onpwd3d3dMmzYN0dHRePDgAXbt2oU9e/awVl34+/vL3N5IXr5c4PLO1KVLF9y4cQN79uzB/fv3ERISwpoA1tTUxIwZMzB9+nTs2bMHmZmZzHufMtklNG3aFN27d8eoUaNw7do1xMbGYsKECRg0aBAsLCwAVDjQa9KkCbNVTpMmTWBnZ4fvv/8e165dQ2ZmJsLCwhAZGclsoRUXF4dVq1YhKSkJf/31F/bt28c4CTQ0NAQAvHz5Eps2bUJqaioSExMRFBSEI0eOsLa94frsxcTEVMvRHg/PJ02t7hD8CVITTtsqO+949+4dFRcXyz0+F+dkeWVljMO158UllFdWxjpyi9/RqaimdCqqKeUWv5OKr3x8LmX+EP4Nm7X/+eefBIC++eYbuWkOHTpEnTp1In19fVJXVydLS0saPHgwXb3Kfn6KiopoyZIl1LJlSxKJRKShoUFNmjShyZMn08OHDxXK4e7uTkFBQTLjpk2bRsbGxqSjo0M+Pj60cuVKKccXR48epVatWpFQKKR69erRt99+y8SVlJTQvHnzyMbGhtTV1cnc3Jz69etHt2/fVlw5RDRhwgSytbUlDQ0NMjExoaFDh9LLly+JqMIJSNOmTUkkEpGRkRH16dOH/vrrL+bcuLg4atmyJQmFQmrVqhUdPXqUs9M2IqL09HTq168fGRgYkEgkoiZNmtCkSZOYZ+vt27fk4+NDenp6ZGVlRbt27WI5bSMievXqFQ0fPpyMjY1JU1OTmjdvTqdOnSIi5U7bSktLKSgoiPT09MjAwICmTJlC/v7+LGcP5eXltGrVKnJ0dCR1dXUyMTEhLy8vunTpEhFV3BPDhg0jfX19MjAwoLFjx9LMmTNZ11HmQEIZlZ25SJySyDoePHjAKb/jx4+TnZ0diUQi6tWrF23ZskXKaZsyx1qRkZHUtGlT0tDQIGdnZ4qOjpbpSEeeMxUioi1btlCDBg1IJBJR37596eeffyYzM7NqyaGsfYiI/vjjD7KzsyMNDQ3q2LEj7dixQ6kzlVevXpGmpialpqYyYQ8ePKDOnTuTSCQiKysrWrdundRzXVhYSJMnTyZzc3MSCoVkZ2dHO3bsYOKTkpLI09OTtLS0SFdXlzp27Mg4TpLUkaJ2jI6OZurd2NiYhg4dKuWwUVLm5s2bM33Uli1bWPEBAQFS99+bN29IJBJJpZWwc+dOUqZO/fLLL2Rubk4ikYi8vLxoz549UnW9ceNGsrKyIm1tbfL396eFCxey2pSIaNOmTUybmpub08SJExXKXpXCwkIaN24cGRoakpaWFvXr14+ePHnCSgOAdu7cyfxevXo1WVpakrq6OjVs2JDmzJkj5UhsxowZVL9+fVJXVyd7e3sKCwtTqAvIc9pmbW0t8xmujKenJy1evFhhOf/LZGVlUUBAANMeVlZWNHHiRGb8kmBtbU3z58+nAQMGkJaWFpmZmdHq1atZaXJzc2nixIlkYWHB5OXn58eM61z6IkUO+Lg8F9HR0eTm5kYaGhpkYGBAXl5eTDyXfk4esvpeWc61qpaxJvrWqtfh0odyaS9ZY83+/fvJxcWFhEIhOTk50YULF1jnKNM3FMGlLpSNq0SK9ThFTtuIuOlbyspY3XGbqMLJFKo4QJZH1fZ2d3eX2c8FBAQozet95OX1jAo+VM8gIkpNTSUAdO7cOZnxT548oWHDhpGFhQVpamqSo6Oj1Hjo7u4u1dbK8g0JCZHSB6rC5Z1p3rx5VL9+fdLX16fJkyfThAkTWHqDWCymn3/+maytrZkxf9GiRQplr8qrV6/I19eXdHR0SE9Pj4YPH07v3r1j4iX3Z+VnJz09nb799lsyNTUlLS0tcnZ2ZjnuS0hIoPbt25O+vj5pampS06ZNadGiRSynoi9evKAvv/yStLW1SUtLi7p27Sr1vsrl2SssLCR9fX2Ki4uTW8Z/wzwAT93zsZy2CYiq4d3hX0Bubi709fWRHH8VTV2qt4xQQklJCeP0ZdasWZ/8Mj8u5IvFsL1c4Sgp8+sW0K5ilSkWFyD6UsWm6Z3c78jcw/e/RFFRER48eIBGjRpVa9k4Dw8PT3UZNWoUUlNTERMTU9eiAACmTZuG3NxcbN68ua5F+SQICQnBpUuXZO51ylOz3Lt3D126dEF6ejqzxQTP+2FjY4NJkyZh0qRJdS0KDweq215ZWVlo1KgRbt26JeUslYenKrye8WkTEBAAgUBQ7ZVnPNVn48aNOH78OM6dOyc3DT8PwFMTSOYl3759Wy0Hi9WFX3fPI0W5uBBicYHUwcPDw8NT+6xYsQJJSUnIyMhglkcGBATUtVgMs2fPhrW19Qc5q/k3ERERgWXLltW1GP8Jnjx5gj179vCTvTw8PDwfAK9nfD4QEaKjo2Xum89T86irq7O2y+Lh+dzhnbbJgIhkemeXUNtec2sDIkKBgkGzoOx/e3VdvuICTRR/DLF4eOqMHj16yLVkmDVrVq15ZB8zZgx+/fVXmXFDhgyR6432v0ZMTAx69OghN17iIZorn1O9X7t2DcuWLcO7d+/QuHFjrFmz5r0daNQGBgYGtfZ8fI5I9qHjqX2q48me57/N59Tnf4o8fPgQTk5OcuOTk5PRsGHDjyjRp0tN6pMfq955PePzQSAQSDlg46k9PqXngIenJuC3dKgCEWHHjh2cnbJ9Dls6EBF638zg7JRtOw2WO+Grr98WbdscqtbG/v9G+KUcnz/Z2dkoLCyUGWdkZAQjI6Naue7z58+Rm5srM05PT0/K2+x/lcLCQoXOM+zs7KqVH1/vPDw8PP8d+D7/wygrK0NWVpbceBsbG6ip8XZDQM3qk3y98/B8+vDzADw1wcfa0oEfMapQWlrKebLXysoK6urqtSzRh1NQXs55steBUtCtwyWoqWnLjFdREf3nJ3t5/h00aNCgTq5ramrKv2hyQCQSVXtSVxF8vfPw8PD8d+D7/A9DTU2tRsfgfzM1qU/y9c7Dw8PDU5PwE74KmDp1qkLrXXV19U9i8lPpdg3i/8Xd6dAMWqrSWzeXiwtx+YoLNFAMNbU+/3mnbDw8PDw8PDw8PDw8PDw8PDw8PJ8j/ISvAoRC4b9uuwZNFENThq8+MYr4fXt5eHh4eHh4eHh4eHh4eHh4eHg+c/gJ38+c6m7XEH+lP+reJpmHh4eHh4eHh4eHh4eHh4eHh4enNuAnfP9FcNmuQdlkr75+W6ioiGpHQB4eHh4eHh4eHh4eHh4eHh4eHp5ahZ/w/RehpaoCbVVVqXAxVJjtGjp+Fa9wf17eKRsPDw8PDw8PDw8PDw8PDw8PD8/ni7Q5KM9nS7m4EGJxgcxDgqqqlsKDn+zl4fnvIRAIcOLECQBAVlYWBAIBEhMT5aaPjo6GQCDAmzdvPop8XAgNDUWrVq0+2vWq1sGuXbtgYGDw0a6vCK6ybN++HZ6enrUvEA9PFQYNGoSwsLC6FoOH54OwsbHBqlWr6lqMj0rVsXbYsGHo27evwnM6deqESZMm1apcNU3VcfRj6xiK4CrL3LlzMXr06NoXiIenEiUlJbCxscGNGzfqWhQeHh7wE76fP0TMv5evuCD6UgupI+ZK+zoUkOdTJS4uDqqqqujZs2eN5SkQCKSOr776qsby/9z5lCYF5WFlZYUnT56gefPmdS3KB7F161Z07NgRhoaGMDQ0RLdu3XDt2rVau56Pjw/S09NrLf+apqioCHPnzkVISEhdi8Li3bt3mDRpEqytrSESieDm5obr169LpUtJSUHv3r2hr68PbW1tfPHFF3j48KHcfDt16iSzf6rJ/u9jkpOTAz8/P+jp6cHAwAAjRoxAXl6ewnMyMzPRr18/mJiYQE9PDwMHDsSzZ89YaW7evAkPDw8YGBjA2NgYo0ePZuX76tUrdO/eHRYWFtDQ0ICVlRUmL+RrSAAAbpJJREFUTJiA3NxcJo3kY0jV4+nTp0yaOXPmYOHChXj79m0N1QgPUDH5JqlvdXV11K9fHx4eHtixYwfKy8vrRCZeL6ge169fR9euXWFgYABDQ0N4eXkhKSmprsWSy+rVq7Fr1666FqPWmTp1KqKioupaDM48ffoUq1evxuzZs+taFCmUjd9cxipZrF+/HjY2NtDU1ET79u1rVeerbR4+fIiePXtCS0sLpqammDZtGsrKyuSmlzfuCgQCmTpURkYGdHV1pd5J7t27h/79+8PGxgYCgUDpB60lS5ZAIBCwPugIhUJMnToVM2bMqE6ReXh4agl+wvcTh4iQLxbLPfJKC5Rn8v/w+/PyVGb79u2YOHEiLl++jMePHytMS0QKFY3K7Ny5E0+ePGGOkydP1oS4PB8JVVVVmJmZQU3t897xJzo6Gr6+vrh48SLi4uJgZWUFT09PZGdn18r1RCIRTE1NayXv2uC3336Dnp4eOnToUNeisBg5ciQiIyOxd+9e3LlzB56enujWrRur3TIzM/HVV1+hSZMmiI6Oxu3btzF37lxoamrKzffYsWOsfunu3btQVVXFgAEDPkaxahw/Pz/cu3cPkZGROHXqFC5fvqzQkis/Px+enp4QCAS4cOECYmNjUVJSAm9vb2Yi8PHjx+jWrRvs7OwQHx+PM2fO4N69exg2bBiTj4qKCvr06YOTJ08iPT0du3btwvnz5zFmzBipa6alpbHqvPLz0bx5c9ja2uLXX3+tuUrhAQB0794dT548QVZWFiIiItC5c2cEBQWhV69enMfxmobXC7iRl5eH7t27o2HDhoiPj8eVK1egq6sLLy8vlJaW1rV4MtHX1//kP2TXBDo6OjA2Nq5rMTizbds2uLm5wdrauq5FYaFs/OYyVsni0KFDmDJlCkJCQnDz5k20bNkSXl5eeP78+ccqWo0hFovRs2dPlJSU4M8//8Tu3buxa9cuzJs3T+45bm5urD72yZMnGDlyJBo1aoR27dqx0paWlsLX1xcdO3aUyqegoACNGzfGkiVLYGZmplDO69evY/PmzXB2dpaK8/Pzw5UrV3Dv3j2Opebh4ak16D/G27dvCQAlx1+VGV9cXEwhISEUEhJCxcXFH1k6NuXl5dTrRjrVv3CL0/G64BmVleXLPcrLy+u0PP8mCgsLKTk5mQoLC+talPfi3bt3pKOjQ6mpqeTj40MLFy5kxV+8eJEA0OnTp6lNmzakrq5OFy9eJLFYTEuXLiVbW1sSCoVkZWVFP//8M3MeADp+/LjU9V6+fEmDBg0iCwsLEolE1Lx5c9q/fz8rjbK8Hz58SAMGDCB9fX0yNDSk3r1704MHD5SW9dKlS6SmpkZPnjxhhQcFBdFXX31FREQhISHUsmVLVvzKlSvJ2tqa+R0QEEB9+vSh5cuXk5mZGRkZGdG4ceOopKSESVNUVEQ//vgjWVhYkJaWFrm4uNDFixdZdVr5CAkJUSq/ojy5yk5EtH37dnJyciKhUEhmZmY0fvx4Jq5yuz148IAA0K1bt5j48PBwsre3J01NTerUqRPt3LmTANDr16+ZNDExMfTVV1+RpqYmWVpa0sSJEykvL4+J37NnD7Vt25Z0dHSofv365OvrS8+ePWPiJfVz/vx5atu2LYlEInJ1daXU1FSldSSvHipTVlZGurq6tHv3bk75cZVXUgc7d+4kfX19Vh4//fQTmZiYkI6ODo0YMYJmzJjBkvFD7ykJO3fuJCsrKxKJRNS3b19asWKFlCxV6dmzJ02dOpUVdu3aNerWrRsZGxuTnp4eff3115SQkMBK8/r1axo9ejSZmpqShoYGNWvWjP744w8m/sqVK+Tu7k4ikYgMDAzI09OTcnJyFMoioaCggFRVVenUqVOs8DZt2tDs2bOZ3z4+PjRkyBBOecpj5cqVpKury7pHuTB9+nSyt7cnkUhEjRo1ojlz5rDaS9KmlQkKCiJ3d3fmt7K+ThnJyckEgK5fv86ERUREkEAgoOzsbJnnnD17llRUVOjt27dM2Js3b0ggEFBkZCQREW3evJlMTU1JLBYzaW7fvk0A6P79+3LlWb16NVlaWjK/qz4b8pg/fz7TB/PUDLLuPyKiqKgoAkBbt25lwl6/fk0jRoygevXqka6uLnXu3JkSExNZ5504cYJat25NGhoa1KhRIwoNDaXS0lImHgBt2LCBunfvTpqamtSoUSM6cuQIK4/PVS8gIvrtt9+YcdPa2ppWrFjBSm9tbU0rV65kfv/999/Uu3dv0tbWJl1dXRowYAA9ffqUiIjS0tIIAKWkpLDy+OWXX6hx48ZERHT9+nUCQA8fPmTiuTyDlVE2FstqD319fdq5cyfz+9GjRzRo0CAyNDQkLS0tatu2LV29WvHeVHWsrXrP5eXl0dChQ0lbW5vMzMxoxYoV5O7uTkFBQUwaZeMal3vD3d2dJk6cSNOmTSNDQ0OqX78+J51KQlhYGDVv3py0tLTI0tKSxo4dS+/evWPiq47pVctdWlpKEydOJH19fTIyMqLp06eTv78/qy64yMjlOVy8eDGZmpqSjo4OBQYGSukSsmjWrBmtW7eOFRYREUEdOnRgZO7ZsydlZGSw0ihqeyKikydPUrt27UhDQ4OMjY2pb9++CuWoirLxm8tYJQsXFxeWXisWi8nCwoIWL17MWbaysjIKDAwkGxsb0tTUJAcHB1q1ahUrTdV7mYioT58+FBAQwPwuKiqi6dOnk6WlJQmFQrK1taVt27ZxluP06dOkoqLC9B1ERBs3biQ9PT3OcxMlJSVkYmJCCxYskIqbPn06DRkyRKbeWpmq/Vtl3r17R/b29hQZGSmzToiIOnfuTHPmzOEk7+fG5z4PwPNpIJmXrNzf1Qa8hW8tQkqsc5UdL0vLcD03n9O1HCgFOura/P68dQgRobygoE4OqrS1BxcOHz6MJk2awNHREUOGDMGOHTtk5jFz5kwsWbIEKSkpcHZ2RnBwMJYsWYK5c+ciOTkZ+/fvR/369ZVer6ioCG3btkV4eDju3r2L0aNHY+jQoazlVoryLi0thZeXF3R1dRETE4PY2Fjo6Oige/fuKCkpUXjtr7/+Go0bN8bevXuZsNLSUuzbtw+BgYFcqwwAcPHiRWRmZuLixYvMF/fKSxknTJiAuLg4HDx4ELdv38aAAQPQvXt33L9/H25ubli1ahX09PSYr+9Tp05Vek1FeXJl48aNGD9+PEaPHo07d+7g5MmTsLOz43Tuo0eP8O2338Lb2xuJiYkYOXIkZs6cyUqTmZmJ7t27o3///rh9+zYOHTqEK1euYMKECUya0tJS/PTTT0hKSsKJEyeQlZXFshyUMHv2bISFheHGjRtQU1OrdhvJo6CgAKWlpTAyMuKUnqu88ti3bx8WLlyIpUuXIiEhAQ0bNsTGjRul0n3IPQUA8fHxGDFiBCZMmIDExER07twZP//8s1L5rly5ImX18e7dOwQEBODKlSu4evUq7O3t8c033+Ddu3cAgPLycvTo0QOxsbH49ddfkZycjCVLlkD1/52FJiYmomvXrnByckJcXByuXLkCb29viMViABVbmigah8rKyiAWi6UsdUUiEa5cucLIEB4eDgcHB3h5ecHU1BTt27dn9qDmyvbt2zFo0CBoa2tX6zxdXV3s2rULycnJWL16NbZu3YqVK1dWKw9l/WinTp0U3mtxcXEwMDBgtV+3bt2goqKC+Ph4mecUFxdDIBBAQ0ODCdPU1ISKigpTt8XFxRAKhVBR+Z9qKBJVrAqSpKnK48ePcezYMbi7u0vFtWrVCubm5vDw8EBsbKxUvIuLC65du4bi4mK5Zf1UICK5PhJq+6ju+C6LLl26oGXLljh27BgTNmDAADx//hwRERFISEhAmzZt0LVrV+Tk5AAAYmJi4O/vj6CgICQnJ2Pz5s3YtWsXFi5cyMp77ty56N+/P5KSkuDn54dBgwYhJSVFqUyful6QkJCAgQMHYtCgQbhz5w5CQ0Mxd+5cudsXlJeXo0+fPsjJycGlS5cQGRmJv/76Cz4+PgAABwcHtGvXDvv27WOdt2/fPgwePBgA4OjoCGNjY2zfvh0lJSUoLCzE9u3b0bRpU9jY2CitUy5jsTLy8vLg7u6O7OxsnDx5EklJSZg+fTrnLUGmTZuGS5cu4ffff8e5c+cQHR2NmzdvstIoG9e43BsAsHv3bmhrayM+Ph7Lli3DggULEBkZyUlOFRUVrFmzBvfu3cPu3btx4cIFTJ8+ndO5ALB06VLs27cPO3fuRGxsLHJzc2WOQ8pkVPYcHj58GKGhoVi0aBFu3LgBc3NzbNiwQaFsOTk5SE5Olhrj8/PzMWXKFNy4cQNRUVFQUVFBv379mLZV1vbh4eHo168fvvnmG9y6dQtRUVFwcXFh8g8NDVV4n3IZv7mMVVUpKSlBQkICunXrxoSpqKigW7duiIuLU1hXVeWztLTEkSNHkJycjHnz5mHWrFk4fPgw5zwAwN/fHwcOHMCaNWuQkpKCzZs3Q0dHh4m3sbFBaGio3PPj4uLQokULll7g5eWF3NxczhazJ0+exKtXrzB8+HBW+IULF3DkyBGsX7++WmWqyvjx49GzZ09WnVfFxcUFMTExH3QdHh6eGqBWp5M/QWrKwre8vJzyysrkH6Vl1PVaKmfrXGXH8+ISmdfJLX5Hp6KaUmRUYyory6+tauOpgqwve+L8fEp2bFInhzi/em3v5ubGfLUuLS2levXqsawrJBZaJ06cYMJyc3NJQ0ODZSFUFQCkqalJ2trazCHLsoeowsLwxx9/5JT33r17ydHRkWWlXlxcTCKRiM6ePau0vEuXLqWmTZsyv48ePUo6OjqM1QtXC19ra2sqKytjwgYMGEA+Pj5EVGHZo6qqKmVh17VrVwoODiYi2VagiuCSJxfZLSwsWBaSVYECC9/g4GBycnJipZ8xYwbLgm/EiBE0evRoVpqYmBhSUVGR+/VbYskksaipbOErITw8nABw+oKuzMJ37Nix1Lhx4/f+Gi9PXnkWvu3bt2dZmxARdejQQcoy6kPvKV9fX/rmm29Y8T4+Pgrvs9evXxMAunz5ssIyi8Vi0tXVZSx4JZY3aWlpMtP7+vpShw4d5OZ37NgxcnR0VHhNV1dXcnd3p+zsbCorK6O9e/eSiooKOTg4EBHRkydPCABpaWnRL7/8Qrdu3aLFixeTQCCg6OhohXlLiI+PJwAUHx/PKb0ili9fTm3btmV+K7Pw5dKPDh06lGbOnCk3fuHChUx9VMbExIQ2bNgg85znz5+Tnp4eBQUFUX5+PuXl5dGECRMIAPPs3r17l9TU1GjZsmVUXFxMOTk51L9/fwJAixYtYuU3aNAgEolEBIC8vb1Zz1Vqaipt2rSJbty4QbGxsTR8+HBSU1OTshZPSkoiAJSVlSW3rJ8KZWX5dD6qcZ0c1dHt5Fn4ElX0C5JxMCYmhvT09KioqIiVxtbWljZv3kxEFf1M1Xbfu3cvmZubM78B0JgxY1hp2rdvT2PHjmWl+Rz1gsGDB5OHhwfrnGnTprHGw8oWcOfOnSNVVVWWde69e/cIAF27do2IKsZmW1tbJl6W1e+dO3fI1taWVFRUSEVFhRwdHTk/I1zGYiix8N28eTPp6urSq1evZF5DkYXvu3fvSCgU0uHDh5n4V69ekUgkYiwAuYxrsqh8bxBVWFpWXSHwxRdf0IwZM+TmoYgjR46QsbEx81uZhW/9+vVp+fLlzO+ysjJq2LChlIWvIhm5PIeurq40btw4Vnz79u0V6ju3bt2SshSXxYsXLwgA3blzh4iUt72rqyv5+fnJzW/t2rXUpUsXufFcxm8uY1VVsrOzCQD9+eefrPBp06aRi4uLwjpQxvjx46l///7Mb2UWvpJnWpE1cpcuXWjt2rVy40eNGkWenp6ssPz8fGblJRd69OhBPXr0YIW9fPmSrKys6NKlS0Sk/J1EnoXvgQMHqHnz5kyfIs/Cd/Xq1WRjY8NJ3s8N3sKXpybgLXw/YYgIvW9mwPbyHflHzB3czSuskeu56GujnroatFVVpQ4tVRVoohi87S4PV9LS0nDt2jX4+voCANTU1ODj44Pt27dLpa1sHZCSkoLi4mJ07dpVYf4rV65EYmIic3h4eEAsFuOnn35CixYtYGRkBB0dHZw9e5Zx0qAs76SkJMbBgI6ODnR0dGBkZISioiJkZmYqLfOwYcOQkZGBq1evAqiwNBw4cGC1rfuaNWvGWDMCgLm5ObM/2J07dyAWi+Hg4MDIqKOjg0uXLnGSURY1kefz58/x+PFjpe0mj5SUFLRvz3b86OrqyvqdlJSEXbt2sWT08vJCeXk5Hjx4AKDCWsrb2xsNGzaErq4uYxFY1dFW5b3AzM3NmTJ8CEuWLMHBgwdx/Phxhfu8VoarvPJIS0tjWb4AkPoNfPg9xaV9qlJYWDE2Va2LZ8+eYdSoUbC3t4e+vj709PSQl5fHlDkxMRGWlpZwcHCQma/Ewlce/fr1Q2pqqkLZ9u7dCyJCgwYNoKGhgTVr1sDX15exOpVYGvXp0weTJ09Gq1atMHPmTPTq1QubNm1SmLeE7du3o0WLFjLbQxmHDh1Chw4dYGZmBh0dHcyZM4fzPQFw60f37NmDxYsXV1s2RZiYmODIkSP4448/oKOjA319fbx58wZt2rRh6rZZs2bYvXs3wsLCoKWlBTMzMzRq1Aj169dnWf0CFf38zZs38fvvvyMzMxNTpkxh4hwdHfH999+jbdu2cHNzw44dO+Dm5iZlCS2xHi4o4O6LgOf9ISLGwj4pKQl5eXkwNjZm9S0PHjxg+pb/a+++46I4/v+Bv452HL0IAoKgiIgFFQ2KxK4Bo4ktsZGAhtjbRxN7QWOwE3uP2FFjEqPRWDEYRERFURCkCbaARqwo/d6/P/yxX5c74FCK4Pv5ePDQ252dnd292Zmdm525du0afvjhB9H64cOHIy0tTXTNit5v3NzcFHr4Vsd6QVxcnMIY5+7u7khMTBTeWnhTXFwcbGxsYGNjIyxr3LgxjIyMhPMxaNAgpKamCvvcs2cPXFxc0KhRIwCv782+vr5wd3fHhQsXEBYWhqZNm6Jnz57CfbskqpTFpYmKikLLli1VfhvmTcnJycjNzRWVSSYmJnB0dBQ+q1KulfbdKFR07NA3y8/SnD59Gl27dkWdOnWgr6+Pr7/+GhkZGSrdj549e4YHDx6IyhB1dXW0atVKIWxJaVQlH5ZnGZ+YmIjBgwejfv36MDAwEHrjvlnGl3TtSyvjx40bV+LEdqqU36qUVRVp3bp1aNWqFczMzKCnp4fNmzeXqYyPioqCurq60rdeCgUHB5ep131Z3bt3DydOnICvr69o+fDhwzFkyBB06NDhreO+e/cuJk6ciD179pRan5bJZFy+M/YeqN6z8lSRV3K5ykMtNNWT4VDLBlDaIksEuTy71DhkahLI5coregUFfCN9X0hkMjheiayyfatq69atyM/Ph5WVlbCMiCCVSrF27VoYGhoKy99sEJWpuA8LCwuF4QIWL16MVatWYeXKlWjWrBl0dXXxv//9T3jtsrS4MzMz0apVK4VXIYHXlcPSmJub47PPPsO2bdtQr149HDt2DCEhIcJ6NTU1hddmlU2QoqmpKfoskUhEr8Kpq6sjMjJS1IAHQPQqV1moEmdpaVf1ur2LzMxMjBw5EhMmTFBYV7duXbx8+RIeHh7w8PDAnj17YGZmhjt37sDDw0Ph1ds3z3Fh48S7zC6/fPlyLF68GKdPn1Y6sYQyZUnvu6rs7xQAmJqaQiKR4MmTJ6LlPj4+yMjIwKpVq2BrawupVAo3NzeV82l5fNfs7e1x9uxZvHz5Es+fP4elpSUGDhyI+vXrAwBq1aoFDQ0NNG7cWLSdk5NTsa97vunly5fYt28ffvjhhzKnLTw8HF5eXpg/fz48PDxgaGiIffv2ISAgQAhTGfnRwsJCoVEjPz8fjx8/LnGSlU8++QTJycl49OgRNDQ0YGRkBAsLC+HcAsCQIUMwZMgQPHjwALq6upBIJPjpp59EYQrTYGFhgUaNGsHExATt27fHnDlzhB9pinJ1dVW4PoWvLKtyD69qamoydOoYXWX7Lg9xcXGoV68egNf3FktLS1E5WKhwAq7MzEzMnz8f/fr1Uwij6g9nhapjvaAiWFhYoEuXLggKCkLbtm0RFBSE0aNHC+uDgoKQmpqK8PBwoXErKCgIxsbGOHToEAYNGlRi/KWVxcDrMqYq6wyqlGvLli0r8btRqKTysySpqano1asXRo8eDX9/f5iYmODcuXPw9fVFbm4udHR03vEoVUujKvnwbdSqVQsA8OTJE1Fe+Oyzz2Bra4stW7bAysoKcrkcTZs2rbQyXtXyW5Wyqmi86urqePDggWj5gwcPSp147E379u3D999/j4CAALi5uUFfXx/Lli0TDZVUWWV80eFLCo9NlePZtm0bTE1N8fnnn4uWnzlzBocPH8by5csB/P+hCOVyaGhoYPPmzSoNoRYZGYmHDx/CxcVFWFZQUIB//vkHa9euRU5OjpCvHz9+XC3Kd8ZqOm7wfUfR7k2go178L446ampKxywkIkReGYBnz64o2YpVRxKJBJJyrCRWhPz8fOzcuRMBAQH45JNPROv69OmDvXv3Kp1tHQAcHBwgk8kQHByMb7/9tkz7DQsLQ+/evfHVV18BeN2Al5CQIFT6SovbxcUF+/fvh7m5OQwMDMq070LffvstBg8eDGtra9jb24t67piZmSE9PV3UAyoqKqpM8bds2RIFBQV4+PCh0plvAUBLS0tpz6B3ibO0tOvr68POzg7BwcHo3Lmz6gf0/zk5OSnMqF7YO6mQi4sLYmNjix0XODo6GhkZGVi8eLHQ++ny5ctlTktZLV26FP7+/jhx4oTCWHYluXnz5jun19HREZcuXYK3t7ew7NKlS2WKQ5Xr7+TkpDBua9HrU5SWlhYaN26M2NhY0X0gLCwM69evx6effgrgdU+OR48eCeudnZ1x7949JCQkKO3l6+zsjODgYMyfP1/lYyyOrq4udHV18eTJE5w4cQJLly4V0v7RRx8hPj5eFD4hIUGl2cgPHDiAnJwc4V5UFufPn4etrS1mzZolLLt9+7YojJmZGWJiYkTLoqKihIf+d7mPFnJzc8PTp08RGRkp9Cg7c+YM5HK5Qk8wZQobA86cOYOHDx8qPBQCEMYODAwMhLa2Nrp3715sfIWNFyWNxRsVFaXQGBwTEwNra2shPe8ziUQCdfX3u3wvyZkzZxAdHY1JkyYBeH3PTk9Ph4aGRrFjbrq4uCA+Pr7U8d4vXLggus9duHABLVu2LDVN73u9wMnJSWHs6bCwMDRs2FChobIw/N27d3H37l2h3IiNjcXTp09FDVxeXl6YOnUqBg8ejFu3bokacV+9egW1Is8NhZ9VacgsrSwGXt+j0tLShM+JiYmiXnjOzs74+eef8fjx4zL38rW3t4empiYiIiKEBuYnT54gISFB6PGoSrlW2nfjXUVGRkIulyMgIEBoWC/LOK2GhoaoXbs2Ll26JPSWLCgowJUrV9CiRQuV41ElHxaW8UXzWEns7e1hYGCA2NhYoazOyMhAfHw8tmzZIpz3oj/ClXbtC8v4ouPCqqqs5bcqZVVhvK1atUJwcDD69OkD4PV3pqw9acPCwtCuXTuMGTNGWFb0bYGi+aegoAAxMTFC/bpZs2aQy+U4e/ZsiePblsTNzQ3+/v54+PAhzM3NAQCnTp2CgYFBqXmAiLBt2zZ4e3sr/NgQHh4uegY5dOgQlixZgvPnz6NOnToqpa1r166Ijhb/+Dls2DA0atQI06ZNE90bY2JiVCoLGGMVi4d0eEc66mpKh1oo/Ctughq5PKtcG3sNDVuVWy8QVnMdOXIET548ga+vL5o2bSr669+/v9JhHQppa2tj2rRpmDp1Knbu3Ink5GRcuHChxG0KOTg44NSpUzh//jzi4uIwcuRI0S/xpcXt5eWFWrVqoXfv3ggNDUVKSgpCQkIwYcIE3Lt3T6Vj9/DwgIGBAX788UeFymqnTp3w33//YenSpUhOTsa6detw7NgxleIt1LBhQ3h5ecHb2xu///47UlJScPHiRSxatAhHjx4F8HqihszMTAQHB+PRo0elvuqkSpyqpH3evHkICAjA6tWrkZiYiCtXrmDNmjUqHdeoUaOQmJiIKVOmID4+HkFBQQqT1kybNg3nz58XJg5LTEzEoUOHhIp23bp1oaWlhTVr1uDWrVs4fPgwFixYoNL+39aSJUswZ84cBAYGws7ODunp6UhPT0dmZmap25ZHesePH4+tW7dix44dSExMxI8//ojr16+XafJMVa7/hAkTcPz4cSxfvhyJiYlYu3Ytjh8/XmrcHh4eCg97Dg4O2LVrF+Li4hAREQEvLy9Rb5WOHTuiQ4cO6N+/P06dOoWUlBQcO3ZM2N+MGTNw6dIljBkzBtevX8fNmzexYcMGodH44MGDwqvLxTlx4gSOHz+OlJQUnDp1Cp07d0ajRo1EeXbKlCnYv38/tmzZgqSkJKxduxZ//vmn6CHN29sbM2bMUIh/69at6NOnD0xNTUs9R0U5ODjgzp072LdvH5KTk7F69WocPHhQFKZLly64fPkydu7cicTERPj5+YkagFW5jxaX9kJOTk7w9PTE8OHDcfHiRYSFhWHcuHEYNGiQ8ObG/fv30ahRI1EvoW3btuHChQtITk7G7t278eWXX2LSpEmi163Xrl2LK1euICEhAevWrcO4ceOwaNEiobfZX3/9hW3btiEmJgapqak4evQoRo0aBXd3d6HBYuXKlTh06BCSkpIQExOD//3vfzhz5gzGjh0rOo7Q0FCFHx7Zu8vJyUF6ejru37+PK1euYOHChejduzd69eolNBp169YNbm5u6NOnD06ePInU1FScP38es2bNEn7cmjt3Lnbu3In58+fjxo0biIuLw759+zB79mzR/g4cOIDAwEAkJCTAz88PFy9eVKmR5X2vF3z33XcIDg7GggULkJCQgB07dmDt2rXFTrbarVs3NGvWDF5eXrhy5QouXrwIb29vdOzYUfSDY79+/fDixQuMHj0anTt3Fr1t1b17dzx58gRjx45FXFwcbty4gWHDhkFDQ0OlH2xLK4uB1/eotWvX4urVq7h8+TJGjRolahgaPHgwLCws0KdPH4SFheHWrVv47bffVJr8Sk9PD76+vpgyZQrOnDmDmJgYDB06VPQqvirlWmnfjXfVoEED5OXlCWX8rl27VB4SqND48eOxaNEiHDp0CPHx8Zg4cSKePHlSpjJelXw4ceJEBAYGYtu2bUIeK23irsIJy94s442NjWFqaorNmzcjKSkJZ86cEQ3FA5R+7f38/LB37174+fkhLi4O0dHRWLJkibD92rVrSx0+TJXyW5WyqmvXrli7dq3wefLkydiyZQt27NiBuLg4jB49Gi9fvixT47SDgwMuX76MEydOICEhAXPmzFH4ob5Lly44evQojh49ips3b2L06NF4+vSpsN7Ozg4+Pj745ptv8Mcffwj3pTd/UCia9qI++eQTNG7cGF9//TWuXbuGEydOYPbs2Rg7dqwwmd3FixfRqFEj3L9/X7TtmTNnkJKSovRHMicnJ9FzX506daCmpoamTZvC2NgYwOsJ8AqH3snNzcX9+/cRFRWFpKQkAK87kRR9ftTV1YWpqSmaNm0q2h+X8Yy9Jyp0hOD3UOHgyNfCzlFOTo7C34sXL0qdtC0zP1+YTC3zjcl2ipLL5ZSf/1LpX07Of8KEHDk5/xUbTtW/NyetYBWvug7W3qtXL4UJngoVTmR07do1hQmpChUUFNCPP/5Itra2pKmpSXXr1hVN6gIlk4EQvZ60o3fv3qSnp0fm5uY0e/Zs8vb2Fk1uUVrcaWlp5O3tTbVq1SKpVEr169en4cOHl2mg8zlz5pC6ujr9+++/Cus2bNhANjY2pKurS97e3uTv768waVtJkzEREeXm5tLcuXPJzs6ONDU1ydLSkvr27UvXr18XwowaNYpMTU0JAPn5+ZWaZlXiLC3tREQbN24kR0dHIY7x48cL6968bkUnbSMi+vPPP6lBgwYklUqpffv2FBgYqPD9uHjxInXv3p309PRIV1eXnJ2dyd/fX1gfFBREdnZ2JJVKyc3NjQ4fPizaj7LvXOHEIykpKaWep6ITqtja2hIAhT9VzvnbpFfZ5Bc//PAD1apVi/T09Oibb76hCRMmUNu2bYX15fWd2rp1K1lbW5NMJqPPPvuMli9fXurkgDdu3CCZTEZPnz4Vll25coVat25N2tra5ODgQAcOHFCYtCMjI4OGDRtGpqampK2tTU2bNqUjR44I60NCQqhdu3YklUrJyMiIPDw8ROeotGrH/v37qX79+qSlpUUWFhY0duxYURrfPOYGDRqQtrY2NW/eXDTBJNHrSUQKJ1EpdPPmTQJAJ0+eVLpvPz8/hXxT1JQpU8jU1JT09PRo4MCBtGLFCoVzPXfuXKpduzYZGhrSpEmTaNy4caJrWtq9Tlnai8rIyKDBgweTnp4eGRgY0LBhw4QJBYn+Lx+/ORnntGnTqHbt2qSpqUkODg4UEBCgUHf4+uuvycTEhLS0tMjZ2Zl27twpWn/mzBlyc3MjQ0ND4Xsybdo0Ub5dsmQJ2dvbk7a2NpmYmFCnTp3ozJkzoniysrLI0NCQwsPDSzxOVjY+Pj7CvU5DQ4PMzMyoW7duFBgYSAUFBaKwz58/p/Hjx5OVlRVpamqSjY0NeXl5iSZ6On78OLVr145kMhkZGBiQq6srbd68WVgPgNatW0fdu3cnqVRKdnZ2tH//ftF+qnO94Ndff6XGjRsL+35zki4ixUmNbt++TZ9//jnp6uqSvr4+ffnll5Senq4Q74ABAwgABQYGKqw7efIkubu7k6GhIRkbG1OXLl3KlE9KK4vv379Pn3zyCenq6pKDgwP99ddfoknbiIhSU1Opf//+ZGBgQDo6OtS6dWthksuSJm0jej1x21dffUU6OjpUu3ZtWrp0qcKkTqWVa6p8N0qbPKs0P/30E1laWpJMJiMPDw/auXNniWV60ePOy8ujcePGkYGBARkbG9O0adPoyy+/pEGDBpUpjarkQ39/f6Eu4ePjQ1OnTi1x0jYior/++ovq1KkjyvenTp0iJycnkkql5OzsTCEhIQr5s6RrT/R6csMWLVqQlpYW1apVi/r16yc6R6WVoUSll9+qlFW2trYK9bk1a9ZQ3bp1SUtLi1xdXenCBfEE7T4+PqKyuKjs7GwaOnQoGRoakpGREY0ePZqmT58uOte5ubk0evRoMjExIXNzc1q0aJHCNc3KyqJJkyaRpaUlaWlpUYMGDUR5XVnai0pNTaUePXqQTCajWrVq0XfffUd5eXnC+sI6aNH68eDBg6ldu3Ylxl1IWb21sO5Q9K+k86bse37+/HkyMjKiV69eqZSW6qa6tgOw90tlTdomISoyEE0N9/z5cxgaGmL69OnCr2TFmTlzJrS0tBSWvywogP0/r19nSHRvoHRIByJC5JVByMyMLTVNnTpGV+tXBT9E2dnZSElJQb169co8lh2rOr6+vvjvv/8UhihgrDJ0794dFhYW2LVrV1UnBQDw5ZdfwsXFpcTepB8SHx8fSCQShR7srPxt2LABBw8exMmTJ6s6KewdSCQSHDx4UHiNujriegErD3K5HE5OThgwYECFv8GkCiJCmzZtMGnSJGGS5g9dx44d0blzZ8ybN6+qk1LjDRw4EM2bN8fMmTOrOikVgtsBWHkobJd89uzZWw9NpQoew7cYNjY2CmPfCN5oI//nnCu0Ufy4daXhoRgYq3jPnj1DdHQ0goKC+KGOVYpXr15h48aN8PDwgLq6Ovbu3YvTp0/j1KlTVZ00wbJly/Dnn39WdTLeC0SEkJAQlSZ+Y+9OU1NT5WFlGKsIXC9g7+L27ds4efIkOnbsiJycHKxduxYpKSkYMmRIVScNwOsfYzZv3qww3uqH6tmzZ0hOThaGDWEVJzc3F82aNRPGjGeMVa0PtsF3QA9PNGnrpnQdEUFdPR9yeZbS9Xl5pY8BWUhPrzFauewrdkwnNTVZmcZ7YowpKpzZWZljx45hzpw5uHjxIkaNGlXi5EOVLTQ0FD169Ch2vSrjzX4omjRpojBBVqFNmzbBy8tL5bgq47xLJBL89ddf8Pf3R3Z2NhwdHfHbb7+99SQeFcHOzg7jx4+v6mS8FyQSSbHfL1b+3nbCOsZUVV3rBSXp0aMHQkNDla6bOXNmje1NV1Z79uzByJEjla6ztbUtdQxcVaipqWH79u34/vvvQURo2rQpTp8+DScnp3eOu7y0aNGiTJPI1WSGhoYqj+3N3o2WlpbCWO+MsarzwQ7pcC3sHJzbuSusfz0Uw4ASJ1TLhhS+kiAAwM22VtDXKr5SyQ26NRO/yvF+KZxMQJk6deqIJp56n2RlZSlMuPCm0mZH/5Dcvn0beXl5StfVrl0b+vr6KsfF550xxmq26lovKMn9+/eRlaW8M4qJiQlMTEwqOUXvpxcvXhQ7yZumpiZsbW0rOUWMsZqE2wFYefighnRYt24dli1bhvT0dDRv3hxr1qyBq6trseEPHDiAOXPmIDU1FQ4ODliyZAk+/fTTMu1TTjkoKHilsLyg4FWJjb1FaWqaQF39vTiNjH2wqmsDnUwmq7Zpr2zl+YDG550xxmq2mniPr1OnTlUnoVrQ19cv04/AjDHGWE1V5S2V+/fvx+TJk7Fx40a0adMGK1euhIeHB+Lj42Fubq4Q/vz58xg8eDAWLVqEXr16ISgoCH369MGVK1fQtGlTlfd757EvMs4qTrb2pvYfRyidTO1VgRwI+/89B7j3LmOMMcYYY4wxxhhj7D1RcotnJfjpp58wfPhwDBs2DI0bN8bGjRuho6ODwMBApeFXrVoFT09PTJkyBU5OTliwYAFcXFywdu3acksTAZAatEWemhGyIVX6xxhjjDHGGGOMMcYYY++bKu3hm5ubi8jISMyYMUNYpqamhm7duiE8PFzpNuHh4Zg8ebJomYeHB/74448y7dvMaB2atumgsJwA9I26ixsvcoDQmDLFyRhjjDHGGGOMMcYYY1WpSht8Hz16hIKCAtSuXVu0vHbt2rh586bSbdLT05WGT09PVxo+JycHOTk5wufnz58DAHo/M4BaWPETOqjC1VAXOmpV3kmaMcYYY4wxxhhjjDHGALwHY/hWtEWLFmH+/Pll3q6pngyHWjYAShiiV0dNDRIew5cxxhhjjDHGGGOMMfaeqNIG31q1akFdXR0PHjwQLX/w4AEsLCyUbmNhYVGm8DNmzBANAfH8+XPY2Njgoos9zGorTgpXiBtzGWOMMcYYY4wxxhhj1U2VjkegpaWFVq1aITg4WFgml8sRHBwMNzc3pdu4ubmJwgPAqVOnig0vlUphYGAg+gMAEz1d6KqrF/vHjb2MARKJRBgfOzU1FRKJBFFRUQCAkJAQSCQSPH36tNz2t337dhgZGQmf582bhxYtWgifhw4dij59+gifO3XqhP/973/ltv+KUNI5VKYizmtlsLOzw8qVK4XPbx53VVMlLRkZGTA3N0dqamqlpImxQo8ePYK5uTnu3btX1Ulh7INRtD7xIShavyha51KmaD2sOqiM+urbUjUtwcHBcHJyQkFBQeUkjLH/b9CgQQgICKjqZDDGykmVD0A7efJkbNmyBTt27EBcXBxGjx6Nly9fYtiwYQAAb29v0aRuEydOxPHjxxEQEICbN29i3rx5uHz5MsaNG1dVh8BYtTJ06FBIJBJIJBJoamqidu3a6N69OwIDAyGXy4vdzsbGBmlpaWjatGklplZs1apV2L59e5Xt/129D+ewsqSlpaFHjx5VnQyV+fv7o3fv3rCzs6vqpIj88ssvaNGiBXR0dGBra4tly5YphMnJycGsWbNga2sLqVQKOzs7BAYGlhjvpUuX0LVrVxgZGcHY2BgeHh64du1aRR1GhTtw4AAaNWoEbW1tNGvWDH/99Vep26xbtw5OTk6QyWRwdHTEzp07Revz8vLwww8/wN7eHtra2mjevDmOHz9ebHyLFy+GRCJR+iNUeHg4unTpAl1dXRgYGKBDhw7IysoC8PptJ29vb/j5+ZXtoBkr4m3L94pU9Ae3wvRJJBLo6urCwcEBQ4cORWRkZJWkrzylp6fj66+/hoWFBXR1deHi4oLffvutqpNVrIEDByIhIaGqk1Hh2rVrh7S0NBgaGlZ1UlQ2depUzJ49G+rq6lWdFJGnT59i7NixsLS0hFQqRcOGDRXK2/v37+Orr76CqakpZDIZmjVrhsuXLxcbZ2EjeNG/4ubned9lZ2dj7NixMDU1hZ6eHvr376/wdnJRyo5fIpGI6nyPHz+Gl5cXDAwMYGRkBF9fX2RmZgrr4+Pj0blzZ9SuXRva2tqoX78+Zs+ejby8PNG+Vq5cCUdHR8hkMtjY2GDSpEnIzs4W1s+ePRv+/v549uxZOZ0RxlhVqvIG34EDB2L58uWYO3cuWrRogaioKBw/flyYmO3OnTtIS0sTwrdr1w5BQUHYvHkzmjdvjl9//RV//PHHB9GAwlh58fT0RFpaGlJTU3Hs2DF07twZEydORK9evZCfn690G3V1dVhYWEBDo+pGgjE0NCy1N8r77H04h5XFwsICUqm0qpOhklevXmHr1q3w9fWt6qSIHDt2DF5eXhg1ahRiYmKwfv16rFixAmvXrhWFGzBgAIKDg7F161bEx8dj7969cHR0LDbezMxMeHp6om7duoiIiMC5c+egr68PDw8PhQeD6uD8+fMYPHgwfH19cfXqVfTp0wd9+vRBTExMsdts2LABM2bMwLx583Djxg3Mnz8fY8eOxZ9//imEmT17NjZt2oQ1a9YgNjYWo0aNQt++fXH16lWF+C5duoRNmzbB2dlZYV14eDg8PT3xySef4OLFi7h06RLGjRsHtTcmfR02bBj27NmDx48fv+PZYB+6tynfK9u2bduQlpaGGzduYN26dcjMzESbNm0UfnSpbry9vREfH4/Dhw8jOjoa/fr1w4ABA5TeM94HMpkM5ubFD29XU2hpacHCwqLavL157tw5JCcno3///lWdFJHc3Fx0794dqamp+PXXXxEfH48tW7agTp06QpgnT57A3d0dmpqaOHbsGGJjYxEQEABjY+NS44+Pj0daWprwV12/m5MmTcKff/6JAwcO4OzZs/j333/Rr1+/Erd587jT0tIQGBgIiUQi+g54eXnhxo0bOHXqFI4cOYJ//vkHI0aMENZramrC29sbJ0+eRHx8PFauXIktW7aIfkwOCgrC9OnT4efnh7i4OGzduhX79+/HzJkzhTBNmzaFvb09du/eXY5nhTFWZegD8+zZMwJAz549q+qksGosKyuLYmNjKSsrS1gml8spNzu/Sv7kcrnKaffx8aHevXsrLA8ODiYAtGXLFmEZADp48CAREaWkpBAAunr1KhER/f333wSAjhw5Qs2aNSOpVEpt2rSh6OholdOybds2srGxIZlMRn369KHly5eToaGhsN7Pz4+aN29ebNo7duxIY8eOpbFjx5KBgQGZmprS7NmzVT4f2dnZ9N1335GVlRXp6OiQq6sr/f3338Xun4hoxYoVZGtrK1q2detWaty4MWlpaZGFhQWNHTtWWFfSOSQiOnr0KDk4OJC2tjZ16tSJtm3bRgDoyZMnQpjQ0FD6+OOPSVtbm6ytrWn8+PGUmZkprN+5cye1atWK9PT0qHbt2jR48GB68OCBsL7wWp0+fZpatWpFMpmM3Nzc6ObNmyqdp6SkJPr888/J3NycdHV1qXXr1nTq1ClRGFtbW1qxYoXS4yYiCgsLo+bNm5NUKqVWrVrRwYMHlX6fSkvjH3/8QS1btiSpVEr16tWjefPmUV5enrA+ISGB2rdvT1KplJycnOjkyZMKaSnqwIEDZGZmJlqWn59P33zzDdnZ2ZG2tjY1bNiQVq5cqbBtSdf+yZMnNGLECDI3NyepVEpNmjShP//8s9h0FDV48GD64osvRMtWr15N1tbWwnf82LFjZGhoSBkZGSrHe+nSJQJAd+7cEZZdv36dAFBiYqLK8Vy8eJG6detGpqamZGBgQB06dKDIyEhhvbLv+5MnTwiAKJ/FxMRQz549SV9fn/T09Ojjjz+mpKQkldMxYMAA6tmzp2hZmzZtaOTIkcVu4+bmRt9//71o2eTJk8nd3V34bGlpSWvXrhWF6devH3l5eYmWvXjxghwcHOjUqVPUsWNHmjhxokJaZs+eXepx1KtXj37++edSw7HKJ5fLKTM/v0r+Kqp8f/LkCfn6+lKtWrVIX1+fOnfuTFFRUaLtSrvfAqD169eTp6cnaWtrU7169ejAgQOiOIref4u7H3t7e5O+vj49fvy4xGPMzMwkfX19hf0cPHiQdHR06Pnz50T0+p7WuXNn0tbWJhMTExo+fDi9ePGi2HOVnZ1N48ePJzMzM5JKpeTu7k4XL14kIqKCggKqU6cOrV+/XrTPK1eukEQiodTUVCIi0tXVpZ07d4rCmJiYiM57Se7cuUNffvklGRoakrGxMX3++eeUkpIirFd2f+nduzf5+PiIjmPq1KlkbW1NWlpaZG9vL9xXCsvZwvrFtm3bRHUuIqJFixaRubk56enp0TfffEPTpk1TqAdt2bKFGjVqRFKplBwdHWndunWi9VOnTiUHBweSyWRUr149mj17NuXm5grrC+tWO3fuJFtbWzIwMKCBAwcK1640x44dI3d3dzI0NCQTExPq2bOnqMworr76Zr1q8+bNZG1tLdQ/AwIClNY/S0pjQUEBLVy4UKgnODs7K3wvVanjFTV27FiFsl+VelhJ157o3cvaDRs2UP369UXXsqhp06bRxx9/rHKcRMqvz9sICAigpk2bko6ODllbW9Po0aNFeb486vSlefr0KWlqaoq+B3FxcQSAwsPDVY6nd+/e1KVLF+FzbGwsAaBLly4Jy44dO0YSiYTu379fbDyTJk0SXY+xY8eK4iVSrPsQEc2fP7/M1/FDoqwdgLGyqqx2yZrfzYyxSpKfK8fmiWerZN8jVnWEpvTdXvvq0qULmjdvjt9//x3ffvutyttNmTIFq1atgoWFBWbOnInPPvsMCQkJ0NTULHG7iIgI+Pr6YtGiRejTpw+OHz/+Vq8079ixA76+vrh48SIuX76MESNGoG7duhg+fHip244bNw6xsbHYt28frKyscPDgQXh6eiI6OhoODg4q7X/Dhg2YPHkyFi9ejB49euDZs2cICwtTadu7d++iX79+GDt2LEaMGIHLly/ju+++E4VJTk6Gp6cnfvzxRwQGBuK///7DuHHjMG7cOGzbtg3A61fPFyxYAEdHRzx8+BCTJ0/G0KFDFV6zmzVrFgICAmBmZoZRo0bhm2++USmtmZmZ+PTTT+Hv7w+pVIqdO3fis88+Q3x8POrWrVvq9s+fP8dnn32GTz/9FEFBQbh9+3axYy+XlMbQ0FB4e3tj9erVaN++PZKTk4XeDX5+fpDL5ejXrx9q166NiIgIPHv2TKUxnkNDQ9GqVSvRMrlcDmtraxw4cACmpqY4f/48RowYAUtLSwwYMABAyddeLpejR48eePHiBXbv3g17e3vExsaKXs+USCTYtm0bhg4dqjRdOTk50NHRES2TyWS4d+8ebt++DTs7Oxw+fBitW7fG0qVLsWvXLujq6uLzzz/HggULIJPJlMbr6OgIU1NTbN26FTNnzkRBQQG2bt0KJyenMg1p8eLFC/j4+GDNmjUgIgQEBODTTz9FYmIi9PX1VYrj/v376NChAzp16oQzZ87AwMAAYWFhQk/EkJAQdO7cGSkpKcWmLTw8XDQ5KwB4eHiUOG5zTk4OtLW1RctkMhkuXryIvLw8aGpqFhvm3LlzomVjx45Fz5490a1bN/z444+idQ8fPkRERAS8vLzQrl07JCcno1GjRvD398fHH38sCuvq6orQ0ND3rqc5A17J5bD/J7pK9p3coRl03/G1bmXl+5dffgmZTIZjx47B0NAQmzZtQteuXZGQkAATE5NS77eF5syZg8WLF2PVqlXYtWsXBg0ahOjoaDg5OZUpjZMmTcLOnTtx6tQp4R6rjK6uLgYNGoRt27bhiy++EJYXftbX18fLly/h4eEBNzc3XLp0CQ8fPsS3336LcePGFTss1NSpU/Hbb79hx44dsLW1xdKlS+Hh4YGkpCSYmJhg8ODBCAoKwujRo4Vt9uzZA3d3d9ja2gJ4/Rbi/v370bNnTxgZGeGXX35BdnY2OnXqVOrx5+XlCWkODQ2FhoYGfvzxR3h6euL69evQ0tJS6Tx6e3sjPDwcq1evRvPmzZGSkoJHjx6ptO0vv/yCefPmYd26dfj444+xa9curF69GvXr1xcd89y5c7F27Vq0bNkSV69exfDhw6GrqwsfHx8AgL6+PrZv3w4rKytER0dj+PDh0NfXx9SpU4V4kpOT8ccff+DIkSN48uQJBgwYgMWLF8Pf37/UdL58+RKTJ0+Gs7MzMjMzMXfuXPTt2xdRUVGiNyeKExYWhlGjRmHJkiX4/PPPcfr0acyZM0chXGlpXLRoEXbv3o2NGzfCwcEB//zzD7766iuYmZmhY8eOKtXxlAkNDcWQIUNEy1Sph5V07cujrD18+DDc3NwwduxYHDp0CGZmZhgyZAimTZsm1G0OHz4MDw8PfPnllzh79izq1KmDMWPGqFQnb9GiBXJyctC0aVPMmzcP7u7upW7zJjU1NaxevRr16tXDrVu3MGbMGEydOhXr169XOY7S6vRDhw5FamoqQkJClG4fGRmJvLw8dOvWTVjWqFEj1K1bF+Hh4Wjbtm2paXjw4AGOHj2KHTt2CMvCw8NhZGSE1q1bC8u6desGNTU1REREoG/fvgrxJCUl4fjx46Lexe3atcPu3btx8eJFuLq64tatW/jrr7/w9ddfi7Z1dXWFv78/cnJyqs3beoyxYlRoc/J7iHv4svKg7Je93Ox8WjsyuEr+crPzVU57cT2AiIgGDhxITk5Owmeo0MN33759QviMjAySyWS0f//+UtMxePBg+vTTTxX2X9Yevk5OTqIeUNOmTRMdQ3Fu375N6urqCr+Md+3alWbMmKF0/0SKvQGsrKxo1qxZxe6npHM4Y8YMaty4sSj8tGnTRD0dfH19acSIEaIwoaGhpKamVuwvy4U9OAt7NrzZe7bQ0aNHCcBb/zrdpEkTWrNmjfC5pB6+GzZsIFNTU9G+tmzZUmwP3+LS2LVrV1q4cKEoHbt27SJLS0siIjpx4gRpaGiIrumxY8dK7eHbu3dv+uabb0o95rFjx1L//v2FzyVd+xMnTpCamhrFx8cXG5+joyP9/vvvxa7ftGkT6ejo0OnTp6mgoIDi4+OpUaNGBIDOnz9PREQeHh4klUqpZ8+eFBERQUePHiVbW1saOnRoiccSHR1N9vb2pKamRmpqauTo6Cj0UntbBQUFpK+vL/RiVqWH74wZM6hevXrF9hiKiIggR0dHunfvXrH71dTUpKCgINGydevWkbm5ebHbzJgxgywsLOjy5cskl8vp0qVLVLt2bQJA//77LxG9vkc1btyYEhISqKCggE6ePEkymYy0tLSEePbu3UtNmzYVvqNFe+CFh4cTADIxMaHAwEC6cuUK/e9//yMtLS1KSEgQpWnSpEnUqVOnYtPMqk5mfj7VPnO1Sv4y88u/fA8NDSUDAwPKzs4WhbG3t6dNmzYRUen3W6LX9/lRo0aJwrRp04ZGjx4tCqNKD9+srCwCQEuWLCn1OCMiIkhdXV3Iqw8ePCANDQ0KCQkhote9N42NjUVvwhw9epTU1NQoPT2diMTnKjMzkzQ1NWnPnj1C+NzcXLKysqKlS5cSEdHVq1dJIpHQ7du3iej/ev1u2LBB2ObJkyf0ySefEADS0NAgAwMDOnHiRKnHQ/T63Do6OorqMzk5OSSTyYQ4SuvhGx8fTwAUen4WKq2Hr5ubG40ZM0a0TZs2bUT1IHt7e4X77YIFC8jNza3YY1u2bBm1atVK+Ozn5yfqjU1ENGXKFGrTpk2xcZTkv//+IwDCG2al9fAdOHCgwlshXl5eCvXPktKYnZ1NOjo6QllcyNfXlwYPHkxEqtXxlDE0NFToKa7Mm/Ww0q59eZS1jo6OJJVK6ZtvvqHLly/Tvn37yMTEhObNmyeEkUqlJJVKacaMGXTlyhXatGkTaWtr0/bt24uN9+bNm7Rx40a6fPkyhYWF0bBhw0hDQ0P0xtDbOHDgAJmamgqfy6NOP336dPr666+LXb9nzx5RHaHQRx99RFOnTlUp3UuWLCFjY2NRndnf358aNmyoENbMzEzhzQM3NzeSSqUEgEaMGEEFBQWi9atWrSJNTU3S0NBQeg8nIrp27RoBeOd6YU3FPXxZeeAevoxVMxpaahixqmOV7bs8EFGZxzhzc3MT/m9iYgJHR0fExcWVul1cXJzCL9Jubm4lToqkTNu2bUVpdnNzQ0BAAAoKCkqc7CI6OhoFBQVo2LChaHlOTg5MTU1V2vfDhw/x77//omvXrmVKc6G4uDi0adNGtOzN8wkA165dw/Xr17Fnzx5hGRFBLpcjJSUFTk5OiIyMxLx583Dt2jU8efJEmJznzp07aNy4sbDdm+OLWlpaCsdQWi/dzMxMzJs3D0ePHkVaWhry8/ORlZWFO3fuqHSc8fHxcHZ2FvWWdHV1VRq2pDReu3YNYWFhoh5ABQUFyM7OxqtXrxAXFwcbGxtYWVkJ64ueT2WysrIUenICryf1CgwMxJ07d5CVlYXc3FxhtvLSrn1UVBSsra0Vvl9vunnzZonpGj58OJKTk9GrVy/k5eXBwMAAEydOxLx584ReTHK5HBKJBHv27BEmpPnpp5/wxRdfYP369Up7+WZlZcHX1xfu7u7Yu3cvCgoKsHz5cvTs2ROXLl0qtmdwUQ8ePMDs2bMREhKChw8foqCgAK9evVL5ewG8Pk/t27cv9o0AV1fXUs/T25gzZw7S09PRtm1bEBFq164NHx8fLF26VDi3q1atwvDhw9GoUSNIJBLY29tj2LBhwoR4d+/excSJE3Hq1Cml3x8AQl4cOXKkMBlty5YtERwcjMDAQCxatEgIK5PJ8OrVq3I/VvbudNTUkNyhWZXtuzy8Wb5fu3YNmZmZCmVdVlYWkpOThTAl3W8L3z4oeo91c3NDVFTUW6UPgEp1EFdXVzRp0gQ7duzA9OnTsXv3btja2qJDhw4AXpetzZs3h66urrCNu7s75HI54uPjhXlCCiUnJyMvL0/Uo1BTUxOurq5CfaZFixZwcnISxsA8e/YsHj58iC+//FLYZs6cOXj69ClOnz6NWrVq4Y8//sCAAQMQGhqKZs1K/v5cu3YNSUlJCm9HZGdnC9ekNFFRUVBXV0fHjm9XF42Li8OoUaNEy9zc3PD3338DeN2zNjk5Gb6+vqIem/n5+aIJ0fbv34/Vq1cjOTkZmZmZyM/Ph4GBgSheOzs70bFaWlri4cOHKqUzMTERc+fORUREBB49eiSq86gyp0t8fLxC/dPV1RVHjhxROY1JSUl49eoVunfvLtomNzcXLVu2BKBaHU8ZZXWS0uphpV378ihr5XI5zM3NsXnzZqirq6NVq1a4f/8+li1bJvT6l8vlaN26NRYuXAjgdXkXExODjRs3Cj3Ai3J0dBTNO1D4NsyKFSuwa9euEtP0ptOnT2PRokW4efMmnj9/jvz8fIX7VUlUqdO/WWZXlMDAQHh5eRVbryjN/v378eLFC1y7dg1TpkzB8uXLhd71ISEhWLhwIdavX482bdogKSkJEydOxIIFC0S93AvrgVwnYaz64wZfxsqJRCJ552EVqlpcXBzq1atX1cmoFJmZmVBXV0dkZKRCw7Cenh6A16+HFT6EFnpzUitVG8beNZ0jR47EhAkTFNbVrVtXeHXVw8MDe/bsgZmZGe7cuQMPDw/k5uaKwr9Z0S98qFZl5vbvv/8ep06dwvLly9GgQQPIZDJ88cUXCvGXh5LSmJmZifnz5yud/OJtK8YAUKtWLTx58kS0bN++ffj+++8REBAANzc36OvrY9myZYiIiABQ+rUvj++GRCLBkiVLsHDhQqSnp8PMzAzBwcEAILxia2lpiTp16ogetp2cnEBEuHfvntKhSYKCgpCamorw8HChcTMoKAjGxsY4dOgQBg0apFL6fHx8kJGRgVWrVsHW1hZSqRRubm7C96Iw7jfzUNFJ4crjPFlYWCjMgP3gwQNYWFgUu41MJkNgYCA2bdqEBw8ewNLSEps3b4a+vj7MzMwAAGZmZvjjjz+QnZ2NjIwMWFlZYfr06cK5j4yMxMOHD+Hi4iLEW1BQgH/++Qdr165FTk6O8KPFmz+8AK+vUdGG8cePHwv7Zu8XiUTyzsMqVLU3y/fMzExYWloqfS25cGLUirrflpQ+ACrXQb799lusW7cO06dPx7Zt2zBs2LAKn5TLy8tLaPANCgqCp6en0GienJyMtWvXIiYmBk2aNAEANG/eHKGhoVi3bh02btxYYtyZmZlo1aqV6MfdQoX3haquk2RmZgIAtmzZotCQWViPCg8Ph5eXF+bPnw8PDw8YGhpi3759CAgIEIUv2vAokUhUqo8AwGeffQZbW1ts2bIFVlZWkMvlaNq0abnXSUpKY+G5OHr0qGjSMgDv/Aq8sjpJafWwyqiTWFpaQlNTU1RndnJyQnp6OnJzc6GlpQVLS0ul5d1vv/1Wpn25uroqDJ9UktTUVPTq1QujR4+Gv78/TExMcO7cOfj6+iI3Nxc6OjqVkn8sLCyQm5uLp0+fiiaZLq1OUig0NBTx8fHYv3+/QrxFfxDJz8/H48ePFeK1sbEB8LreUVBQgBEjRuC7776Duro65syZg6+//loY2qdZs2Z4+fIlRowYgVmzZgn1tsIJZLlOwlj1Vz7dBhhj1d6ZM2cQHR1d5lmBL1y4IPz/yZMnSEhIUGnsPicnJ6HxTFlcqlIWh4ODQ4m9e4HXvQ4KCgrw8OFDNGjQQPRXWHkyMzNDenq6qIL4Zs8lfX192NnZCY1wZeXk5ISLFy8qpP9NLi4uiI2NVUhjgwYNoKWlhZs3byIjIwOLFy9G+/bt0ahRI5V7yagqLCwMQ4cORd++fdGsWTNYWFggNTVV5e0dHR0RHR2NnJwcYdmlS5fKnA4XFxfEx8crPRdqampwcnLC3bt3kZaWJmyjyneqZcuWiI2NFS0LCwtDu3btMGbMGLRs2RINGjQQ9bIq7do7Ozvj3r17SEhIKPNxFqWuro46depAS0sLe/fuhZubm1AJd3d3x7///is8fAJAQkIC1NTUYG1trTS+V69eQU1NTdQ4UvhZ1Qdu4PU5mjBhAj799FM0adIEUqlUNFZkYRrfvB5Fe/45OzsjNDRUoSG4LNzc3BSuw6lTp1TqSaWpqQlra2uoq6tj37596NWrl8IYkNra2qhTpw7y8/Px22+/oXfv3gCArl27Ijo6GlFRUcJf69at4eXlJfS2srOzg5WVFeLj40VxJiQkCON+FoqJiRF6hjFWnoqW7y4uLkhPT4eGhobCvbRWrVpCmJLut4WK3mMvXLhQ5vF7AWDlypUwMDAQjX1Zkq+++gq3b9/G6tWrERsbK+o96OTkhGvXruHly5fCsrCwMKipqYl6Ehayt7eHlpaWaKzOvLw8XLp0SdR4NWTIEMTExCAyMhK//vorvLy8hHWFPeGK3j/U1dVVuq+6uLggMTER5ubmCue78Ac9MzMz0f20oKAAMTExwudmzZpBLpfj7Nm3m0+itHpZ7dq1YWVlhVu3bimksbCh/vz587C1tcWsWbPQunVrODg44Pbt22+VHmUyMjIQHx+P2bNno2vXrnByclJoHC2No6OjQh2krHWSxo0bQyqV4s6dOwrnorDBTZU6njLF1UlKqoeVdu3Lo6x1d3dHUlKS6PuckJAAS0tLYYxpd3d3lcq70kRFRQk/mKoiMjIScrkcAQEBaNu2LRo2bIh///1XFKai6/QA0KpVK2hqaoriiI+Px507d1Sqk2zduhWtWrVC8+bNRcvd3Nzw9OlTREZGCsvOnDkDuVyu8OPLm+RyOfLy8oRrVlj/e1Ph89Kb5yUmJgbW1tZCecAYq8YqdMCI9xCP4cvKQ3Ueu8fHx4c8PT0pLS2N7t27R5GRkeTv7096enrUq1cvyn9jvECoMIZvkyZN6PTp0xQdHU2ff/451a1bl3JyckpNR3h4OKmpqdGyZcsoISGB1qxZQ0ZGRmUew1dPT48mTZpEN2/epKCgINLV1aWNGzeqdC68vLzIzs6OfvvtN7p16xZFRETQwoUL6ciRI0T0elZciURCixcvpqSkJFq7di0ZGxuLxvvavn07aWtr06pVqyghIYEiIyNp9erVKp3D27dvk5aWFn3//fd08+ZN2rNnD1lYWIjGd7t27RrJZDIaO3YsXb16lRISEuiPP/4QZg1++PAhaWlp0ZQpUyg5OZkOHTpEDRs2LHWG6qtXrxIA0Qzgxenbty+1aNGCrl69SlFRUfTZZ5+Rvr6+aCzBksbwffbsGZmYmJC3tzfFxsbS8ePHhbFoC2eFVyWNx48fJw0NDZo3bx7FxMRQbGws7d27VxhvraCggBo3bkzdu3enqKgo+ueff6hVq1aljuF7/fp10tDQEM0Ov2rVKjIwMKDjx49TfHw8zZ49mwwMDETfx9KufadOnahp06Z08uRJunXrFv3111907NgxYX1pY/j+999/tGHDBoqLi6OrV6/ShAkTSFtbmyIiIoQwL168IGtra/riiy/oxo0bdPbsWXJwcKBvv/1WCPP777+To6Oj8DkuLo6kUimNHj2aYmNjKSYmhr766isyNDQUxsRURcuWLal79+4UGxtLFy5coPbt25NMJhN9D9q2bUvt27en2NhYCgkJIVdXV9EYvo8ePSJTU1Pq168fXbp0iRISEmjnzp108+ZNIlJtXMGwsDDS0NCg5cuXU1xcHPn5+ZGmpqYwniOR4rh78fHxtGvXLkpISKCIiAgaOHAgmZiYiPLDhQsX6LfffqPk5GT6559/qEuXLlSvXr0Sx15UNsbmihUryMDAgA4cOECJiYk0e/Zs0tbWFs2O/vLlS5LJZPTPP/+UcMYZK5mq5btcLqePP/6YmjdvTidOnKCUlBQKCwujmTNnCrPAl3a/JXp9n69VqxZt3bqV4uPjae7cuaSmpkY3btwQhSk6hu+2bdsoLS2NUlNT6eTJk9S/f39SV1cXjaGriiFDhpCWlhZ5enqKlr98+ZIsLS2pf//+FB0dTWfOnKH69esLY90Wnqs36xMTJ04kKysrOnbsGN24cYN8fHzI2NhYVC4QEbm7u1Pz5s1JX1+fXr16JSzPzc2lBg0aUPv27SkiIoKSkpJo+fLlJJFI6OjRo6Uey8uXL8nBwYE6depE//zzD926dYv+/vtvGj9+PN29e5eIiDZu3Eg6Ojp05MgRiouLo+HDh5OBgYHouIYOHUo2NjZ08OBBIY7CeRVKG8N33759pK2tTYGBgcL11NfXF5V7W7ZsIZlMRqtWraL4+Hi6fv06BQYGUkBAABERHTp0iDQ0NGjv3r2UlJREq1atIhMTkxLrdkSKY6kWp6CggExNTemrr76ixMRECg4Opo8++kil+mrhcZ87d47U1NQoICCAEhISaOPGjWRqakpGRkZlSuOsWbPI1NSUtm/fTklJSUIdoHC8WlXqeMqsXr1aNOYxkWr1sJKufXmUtXfu3CF9fX0aN24cxcfH05EjR8jc3Jx+/PFHIczFixdJQ0OD/P39KTExkfbs2UM6Ojq0e/duIUzR8njFihX0xx9/UGJiIkVHR9PEiRNJTU1NNKdDaaKioggArVy5kpKTk2nnzp1Up04d0bkujzp9aWP4EhGNGjWK6tatS2fOnKHLly+Tm5ubwhjXyup/z549Ix0dHdG44G/y9PSkli1bUkREBJ07d44cHByE8aKJiHbv3k379++n2NhYSk5Opv3795OVlRV5eXkJYfz8/EhfX5/27t1Lt27dopMnT5K9vT0NGDBAtC8fHx+V5rb4UFXndgD2/qisdklu8GXsLVTnG72Pjw8BECYVMTMzo27dulFgYKDCwP6qVKD//PNPatKkCWlpaZGrqytdu3ZN5bRs3bqVrK2tSSaT0WeffUbLly8vc4PvmDFjaNSoUWRgYEDGxsY0c+ZM0aQnJcnNzaW5c+eSnZ0daWpqkqWlJfXt25euX78uhNmwYQPZ2NiQrq4ueXt7k7+/v8JDycaNG8nR0VGIY/z48cK6ks4hEdGff/5JDRo0IKlUSu3bt6fAwECFh4GLFy9S9+7dSU9Pj3R1dcnZ2Zn8/f2F9UFBQWRnZ0dSqZTc3Nzo8OHD5drgm5KSQp07dyaZTEY2Nja0du1ahYatkhp8iV43yjk7O5OWlha1atWKgoKCCIDwsKFqGo8fP07t2rUjmUxGBgYG5OrqSps3bxbWx8fH08cff0xaWlrUsGFDOn78eKkNvkRErq6uoh8KsrOzaejQoWRoaEhGRkY0evRomj59usIDYEnXPiMjg4YNG0ampqakra1NTZs2FX5MKDxH27ZtKzZN//33H7Vt25Z0dXVJR0eHunbtShcuXFAIFxcXR926dSOZTEbW1tY0efJkUUPEtm3bqOjvuydPniR3d3cyNDQkY2Nj6tKlC4WHh4vClJa+K1euUOvWrUlbW5scHBzowIEDCt+D2NhYcnNzI5lMRi1atKCTJ0+KGnyJXv+o8cknn5COjg7p6+tT+/btKTk5mYj+73tR2vf0l19+oYYNG5KWlhY1adJEoYHFx8eHOnbsKEpXixYthO9R7969he9ioZCQEHJyciKpVEqmpqb09ddfK0zyWJSyBl8iokWLFpG1tTXp6OiQm5sbhYaGitYHBQWJGuUZextlKd+fP39O48ePJysrK9LU1CQbGxvy8vKiO3fuCGFKu98CoHXr1lH37t1JKpWSnZ2dwqStyhp8C/+0tbXJ3t6efHx83mqCpuDgYAJAv/zyi8K669evU+fOnUlbW5tMTExo+PDhwkSmhefqzfpEVlYWjR8/nmrVqkVSqZTc3d3p4sWLCvGuX7+eAJC3t7fCuoSEBOrXrx+Zm5uTjo4OOTs7qzT5VqG0tDTy9vYW0lC/fn0aPny48MySm5tLo0ePJhMTEzI3N6dFixaJJm0rPI5JkyaRpaUlaWlpUYMGDSgwMJCISm/wJXo9OVStWrVIT0+PfHx8aOrUqQrl3p49e6hFixakpaVFxsbG1KFDB1Hj1ZQpU8jU1JT09PRo4MCBtGLFinJr8CUiOnXqlHBvdnZ2ppCQkDI1+BK9ntivTp06JJPJqE+fPvTjjz+ShYVFmdIol8tp5cqVQh3AzMyMPDw86OzZs0IYVep4RWVkZJC2traoTFKlHlbStScqn7L2/Pnz1KZNG+H76e/vL+ooUnjMTZs2JalUSo0aNRLdM4gUy+MlS5aQvb29kFc7depEZ86cEW2jrB5T1E8//USWlpYkk8nIw8ODdu7cqXCu37VOXzTtymRlZdGYMWPI2NiYdHR0qG/fvpSWliYKo6x+tWnTJpLJZPT06VOl8WZkZNDgwYNJT0+PDAwMaNiwYaJ72r59+8jFxUV4VmjcuDEtXLhQ9Kyal5dH8+bNE863jY0NjRkzRnSOsrKyyNDQUKFOyP5PdW4HYO+PymqXlBAVGcymhnv+/DkMDQ3x7NkzhQkEGFNVdnY2UlJSUK9evQoZy46xmm7Pnj0YNmwYnj17ViljIZfm6NGjmDJlCmJiYhRed/sQpaSkoGHDhoiNjVU6DjArX23btsWECRMwZMiQqk4KYyqTSCQ4ePAg+vTpUyX737VrFyZNmoR///1XeKWcsbcxfPhw3Lx5E6GhoVWdFADAlClT8Pz5c2zatKmqk/Je8PPzw9mzZ5WOO87K14YNG3Dw4EGcPHmyqpPy3uJ2AFYeKqtdkidtY4wxVuF27tyJ+vXro06dOrh27RqmTZuGAQMGvBeNvQDQs2dPJCYm4v79+8L4ex+yv/76CyNGjODG3krw6NEj9OvXD4MHD67qpDBWLbx69QppaWlYvHgxRo4cyY29rMyWL1+O7t27Q1dXF8eOHcOOHTuwfv36qk6WYNasWVi/fj3kcjn/CA3g2LFjWLt2bVUn44OgqamJNWvWVHUyGGPlhHv4MvYW+Je90vXo0aPYnhIzZ87EzJkzK3T/oaGh6NGjR7Hr35zk6kPXpEmTYidV2bRpk2himre1dOlSrF+/Hunp6bC0tESfPn3g7+8PHR2dd46bMcZY5auoHr6l1R9yc3Ph7++PDh064NChQ9DT0yvX/VeEhQsXYuHChUrXtW/fHseOHavkFL2f7ty5I5oor6jY2FjUrVv3nfczYMAAhISE4MWLF6hfvz7Gjx+PUaNGvXO8jLGaj9sBWHmorHZJbvBl7C3wjb509+/fR1ZWltJ1JiYmMDExqdD9Z2Vl4f79+8Wub9CgQYXuvzq5fft2sTM3165dG/r6+pWcIsYYYx+qqq4/VITHjx/j8ePHStfJZDLUqVOnklP0fsrPz0dqamqx6+3s7KChwS+oMsaqDrcDsPLAQzowxqq1qn54kclk3KirIltb26pOAmOMMQag6usPFaG6NlRXNg0NDa67McYYY+WEBwVi7B18YB3kGWOMMcYYY4yxDxI//7PqhBt8GXsLmpqaAF5PHMIYY4wxxhhjjLGarfD5v7A9gLH3GQ/pwNhbUFdXh5GRER4+fAgA0NHRgUQiqeJUMcYYY4wxxhhjrDwREV69eoWHDx/CyMgI6urqVZ0kxkrFDb6MvSULCwsAEBp9GWOMMcYYY4wxVjMZGRkJ7QCMve+4wZextySRSGBpaQlzc3Pk5eVVdXIYY4wxxhhjjDFWATQ1NblnL6tWuMGXsXekrq7ON37GGGOMMcYYY4wx9l7gSdsYY4wxxhhjjDHGGGOshuAGX8YYY4wxxhhjjDHGGKshuMGXMcYYY4wxxhhjjDHGaogPbgxfIgIAPH/+vIpTwhhjjDHGGGOMMcYY+1AUtkcWtk9WlA+uwTcjIwMAYGNjU8UpYYwxxhhjjDHGGGOMfWgyMjJgaGhYYfF/cA2+JiYmAIA7d+5U6IlljL3+5crGxgZ3796FgYFBVSeHsRqL8xpjlYfzG2OVh/MbY5WD8xpjlefZs2eoW7eu0D5ZUT64Bl81tdfDFhsaGvKNjLFKYmBgwPmNsUrAeY2xysP5jbHKw/mNscrBeY2xylPYPllh8Vdo7IwxxhhjjDHGGGOMMcYqDTf4MsYYY4wxxhhjjDHGWA3xwTX4SqVS+Pn5QSqVVnVSGKvxOL8xVjk4rzFWeTi/MVZ5OL8xVjk4rzFWeSorv0mIiCp0D4wxxhhjjDHGGGOMMcYqxQfXw5cxxhhjjDHGGGOMMcZqKm7wZYwxxhhjjDHGGGOMsRqCG3wZY4wxxhhjjDHGGGOshuAGX8YYY4wxxhhjjDHGGKshakSD77p162BnZwdtbW20adMGFy9eLDH8gQMH0KhRI2hra6NZs2b466+/ROuJCHPnzoWlpSVkMhm6deuGxMTEijwExqqF8s5rQ4cOhUQiEf15enpW5CEwVm2UJb/duHED/fv3h52dHSQSCVauXPnOcTL2ISnv/DZv3jyF8q1Ro0YVeASMVQ9lyWtbtmxB+/btYWxsDGNjY3Tr1k0hPD+3MVa88s5v/OzGmHJlyWu///47WrduDSMjI+jq6qJFixbYtWuXKEx5lW3VvsF3//79mDx5Mvz8/HDlyhU0b94cHh4eePjwodLw58+fx+DBg+Hr64urV6+iT58+6NOnD2JiYoQwS5cuxerVq7Fx40ZERERAV1cXHh4eyM7OrqzDYuy9UxF5DQA8PT2RlpYm/O3du7cyDoex91pZ89urV69Qv359LF68GBYWFuUSJ2MfiorIbwDQpEkTUfl27ty5ijoExqqFsua1kJAQDB48GH///TfCw8NhY2ODTz75BPfv3xfC8HMbY8pVRH4D+NmNsaLKmtdMTEwwa9YshIeH4/r16xg2bBiGDRuGEydOCGHKrWyjas7V1ZXGjh0rfC4oKCArKytatGiR0vADBgygnj17ipa1adOGRo4cSUREcrmcLCwsaNmyZcL6p0+fklQqpb1791bAETBWPZR3XiMi8vHxod69e1dIehmrzsqa395ka2tLK1asKNc4GavJKiK/+fn5UfPmzcsxlYxVf+9aDuXn55O+vj7t2LGDiPi5jbGSlHd+I+JnN8aUKY9nrJYtW9Ls2bOJqHzLtmrdwzc3NxeRkZHo1q2bsExNTQ3dunVDeHi40m3Cw8NF4QHAw8NDCJ+SkoL09HRRGENDQ7Rp06bYOBmr6SoirxUKCQmBubk5HB0dMXr0aGRkZJT/ATBWjbxNfquKOBmrCSoybyQmJsLKygr169eHl5cX7ty5867JZazaKo+89urVK+Tl5cHExAQAP7cxVpyKyG+F+NmNsf/zrnmNiBAcHIz4+Hh06NABQPmWbdW6wffRo0coKChA7dq1Rctr166N9PR0pdukp6eXGL7w37LEyVhNVxF5DXj9StDOnTsRHByMJUuW4OzZs+jRowcKCgrK/yAYqybeJr9VRZyM1QQVlTfatGmD7du34/jx49iwYQNSUlLQvn17vHjx4l2TzFi1VB55bdq0abCyshIegvm5jTHlKiK/AfzsxlhRb5vXnj17Bj09PWhpaaFnz55Ys2YNunfvDqB8yzaNMoVmjLFyNGjQIOH/zZo1g7OzM+zt7RESEoKuXbtWYcoYY4yxt9ejRw/h/87OzmjTpg1sbW3xyy+/wNfXtwpTxlj1tHjxYuzbtw8hISHQ1tau6uQwVqMVl9/42Y2x8qGvr4+oqChkZmYiODgYkydPRv369dGpU6dy3U+17uFbq1YtqKur48GDB6LlDx48KHYSDQsLixLDF/5bljgZq+kqIq8pU79+fdSqVQtJSUnvnmjGqqm3yW9VESdjNUFl5Q0jIyM0bNiQyzf2wXqXvLZ8+XIsXrwYJ0+ehLOzs7Ccn9sYU64i8psy/OzGPnRvm9fU1NTQoEEDtGjRAt999x2++OILLFq0CED5lm3VusFXS0sLrVq1QnBwsLBMLpcjODgYbm5uSrdxc3MThQeAU6dOCeHr1asHCwsLUZjnz58jIiKi2DgZq+kqIq8pc+/ePWRkZMDS0rJ8Es5YNfQ2+a0q4mSsJqisvJGZmYnk5GQu39gH623z2tKlS7FgwQIcP34crVu3Fq3j5zbGlKuI/KYMP7uxD1151SPlcjlycnIAlHPZVqYp3t5D+/btI6lUStu3b6fY2FgaMWIEGRkZUXp6OhERff311zR9+nQhfFhYGGloaNDy5cspLi6O/Pz8SFNTk6Kjo4UwixcvJiMjIzp06BBdv36devfuTfXq1aOsrKxKPz7G3hflnddevHhB33//PYWHh1NKSgqdPn2aXFxcyMHBgbKzs6vkGBl7X5Q1v+Xk5NDVq1fp6tWrZGlpSd9//z1dvXqVEhMTVY6TsQ9VReS37777jkJCQiglJYXCwsKoW7duVKtWLXr48GGlHx9j74uy5rXFixeTlpYW/frrr5SWlib8vXjxQhSGn9sYU1Te+Y2f3RhTrqx5beHChXTy5ElKTk6m2NhYWr58OWloaNCWLVuEMOVVtlX7Bl8iojVr1lDdunVJS0uLXF1d6cKFC8K6jh07ko+Pjyj8L7/8Qg0bNiQtLS1q0qQJHT16VLReLpfTnDlzqHbt2iSVSqlr164UHx9fGYfC2HutPPPaq1ev6JNPPiEzMzPS1NQkW1tbGj58ODc+Mfb/lSW/paSkEACFv44dO6ocJ2MfsvLObwMHDiRLS0vS0tKiOnXq0MCBAykpKakSj4ix91NZ8pqtra3SvObn5yeE4ec2xopXnvmNn90YK15Z8tqsWbOoQYMGpK2tTcbGxuTm5kb79u0TxVdeZZuEiKhsfYIZY4wxxhhjjDHGGGOMvY+q9Ri+jDHGGGOMMcYYY4wxxv4PN/gyxhhjjDHGGGOMMcZYDcENvowxxhhjjDHGGGOMMVZDcIMvY4wxxhhjjDHGGGOM1RDc4MsYY4wxxhhjjDHGGGM1BDf4MsYYY4wxxhhjjDHGWA3BDb6MMcYYY4wxxhhjjDFWQ3CDL2OMMcYYqzTbt2+HkZFRVSfjrUkkEvzxxx8lhhk6dCj69OlTKelhjDHGGGOsKG7wZYwxxhhjZTJ06FBIJBKFv6SkpKpOGrZv3y6kR01NDdbW1hg2bBgePnxYLvGnpaWhR48eAIDU1FRIJBJERUWJwqxatQrbt28vl/0VZ968ecJxqqurw8bGBiNGjMDjx4/LFA83TjPGGGOM1TwaVZ0AxhhjjDFW/Xh6emLbtm2iZWZmZlWUGjEDAwPEx8dDLpfj2rVrGDZsGP7991+cOHHineO2sLAoNYyhoeE770cVTZo0wenTp1FQUIC4uDh88803ePbsGfbv318p+2eMMcYYY+8n7uHLGGOMMcbKTCqVwsLCQvSnrq6On376Cc2aNYOuri5sbGwwZswYZGZmFhvPtWvX0LlzZ+jr68PAwACtWrXC5cuXhfXnzp1D+/btIZPJYGNjgwkTJuDly5clpk0ikcDCwgJWVlbo0aMHJkyYgNOnTyMrKwtyuRw//PADrK2tIZVK0aJFCxw/flzYNjc3F+PGjYOlpSW0tbVha2uLRYsWieIuHNKhXr16AICWLVtCIpGgU6dOAMS9Zjdv3gwrKyvI5XJRGnv37o1vvvlG+Hzo0CG4uLhAW1sb9evXx/z585Gfn1/icWpoaMDCwgJ16tRBt27d8OWXX+LUqVPC+oKCAvj6+qJevXqQyWRwdHTEqlWrhPXz5s3Djh07cOjQIaG3cEhICADg7t27GDBgAIyMjGBiYoLevXsjNTW1xPQwxhhjjLH3Azf4MsYYY4yxcqOmpobVq1fjxo0b2LFjB86cOYOpU6cWG97LywvW1ta4dOkSIiMjMX36dGhqagIAkpOT4enpif79++P69evYv38/zp07h3HjxpUpTTKZDHK5HPn5+Vi1ahUCAgKwfPlyXL9+HR4eHvj888+RmJgIAFi9ejUOHz6MX375BfHx8dizZw/s7OyUxnvx4kUAwOnTp5GWlobff/9dIcyXX36JjIwM/P3338Kyx48f4/jx4/Dy8gIAhIaGwtvbGxMnTkRsbCw2bdqE7du3w9/fX+VjTE1NxYkTJ6ClpSUsk8vlsLa2xoEDBxAbG4u5c+di5syZ+OWXXwAA33//PQYMGABPT0+kpaUhLS0N7dq1Q15eHjw8PKCvr4/Q0FCEhYVBT08Pnp6eyM3NVTlNjDHGGGOsavCQDowxxhhjrMyOHDkCPT094XOPHj1w4MAB/O9//xOW2dnZ4ccff8SoUaOwfv16pfHcuXMHU6ZMQaNGjQAADg4OwrpFixbBy8tLiNPBwQGrV69Gx44dsWHDBmhra5eazsTERGzcuBGtW7eGvr4+li9fjmnTpmHQoEEAgCVLluDvv//GypUrsW7dOty5cwcODg74+OOPIZFIYGtrW2zchUNYmJqaFjvUg7GxMXr06IGgoCB07doVAPDrr7+iVq1a6Ny5MwBg/vz5mD59Onx8fAAA9evXx4IFCzB16lT4+fkVu//o6Gjo6emhoKAA2dnZAICffvpJWK+pqYn58+cLn+vVq4fw8HD88ssvGDBgAPT09CCTyZCTkyNK/+7duyGXy/Hzzz9DIpEAALZt2wYjIyOEhITgk08+KTZNjDHGGGOs6nGDL2OMMcYYK7POnTtjw4YNwmddXV0Ar3u7Llq0CDdv3sTz58+Rn5+P7OxsvHr1Cjo6OgrxTJ48Gd9++y127dolDEtgb28P4PVwD9evX8eePXuE8EQEuVyOlJQUODk5KU3bs2fPoKenB7lcjuzsbHz88cf4+eef8fz5c/z7779wd3cXhXd3d8e1a9cAvB6OoXv37nB0dISnpyd69er1zg2cXl5eGD58ONavXw+pVIo9e/Zg0KBBUFNTE44zLCxM1KO3sBG3uPMGAI6Ojjh8+DCys7Oxe/duREVFYfz48aIw69atQ2BgIO7cuYOsrCzk5uaiRYsWJab32rVrSEpKgr6+vmh5dnY2kpOT3+IMMMYYY4yxysQNvowxxhhjrMx0dXXRoEED0bLU1FT06tULo0ePhr+/P0xMTHDu3Dn4+voiNzdXacPlvHnzMGTIEBw9ehTHjh2Dn58f9u3bh759+yIzMxMjR47EhAkTFLarW7dusWnT19fHlStXoKamBktLS8hkMgDA8+fPSz0uFxcXpKSk4NixYzh9+jQGDBiAbt264ddffy112+J89tlnICIcPXoUH330EUJDQ7FixQphfWZmJubPn49+/fopbFtSL2YtLS3hGixevBg9e/bE/PnzsWDBAgDAvn378P333yMgIABubm7Q19fHsmXLEBERUWJ6MzMz0apVK1FDe6H3ZWI+xhhjjDFWPG7wZYwxxhhj5SIyMhJyuRwBAQFC79XC8WJL0rBhQzRs2BCTJk3C4MGDsW3bNvTt2xcuLi6IjY1VaFgujZqamtJtDAwMYGVlhbCwMHTs2FFYHhYWBldXV1G4gQMHYuDAgfjiiy/g6emJx48fw8TERBRf4Xi5BQUFJaZHW1sb/fr1w549e5CUlARHR0e4uLgI611cXBAfH1/m4yxq9uzZ6NKlC0aPHi0cZ7t27TBmzBghTNEeulpaWgrpd3Fxwf79+2Fubg4DA4N3ShNjjDHGGKt8PGkbY4wxxhgrFw0aNEBeXh7WrFmDW7duYdeuXdi4cWOx4bOysjBu3DiEhITg9u3bCAsLw6VLl4ShGqZNm4bz589j3LhxiIqKQmJiIg4dOlTmSdveNGXKFCxZsgT79+9HfHw8pk+fjqioKEycOBHA6zFw9+7di5s3byIhIQEHDhyAhYUFjIyMFOIyNzeHTCbD8ePH8eDBAzx79qzY/Xp5eeHo0aMIDAwUJmsrNHfuXOzcuRPz58/HjRs3EBcXh3379mH27NllOjY3Nzc4Oztj4cKFAF6PeXz58mWcOHECCQkJmDNnDi5duiTaxs7ODtevX0d8fDwePXqEvLw8eHl5oVatWujduzdCQ0ORkpKCkJAQTJgwAffu3StTmhhjjDHGWOXjBl/GGGOMMVYumjdvjp9++glLlixB06ZNsWfPHixatKjY8Orq6sjIyIC3tzcaNmyIAQMGoEePHsJEY87Ozjh79iwSEhLQvn17tGzZEnPnzoWVldVbp3HChAmYPHkyvvvuOzRr1gzHjx/H4cOHhcni9PX1sXTpUrRu3RofffQRUlNT8ddffwk9lt+koaGB1atXY9OmTbCyskLv3r2L3W+XLl1gYmKC+Ph4DBkyRLTOw8MDR44cwcmTJ/HRRx+hbdu2WLFiRYkTxhVn0qRJ+Pnnn3H37l2MHDkS/fr1w8CBA9GmTRtkZGSIevsCwPDhw+Ho6IjWrVvDzMwMYWFh0NHRwT///IO6deuiX79+cHJygq+vL7Kzs7nHL2OMMcZYNSAhIqrqRDDGGGOMMcYYY4wxxhh7d9zDlzHGGGOMMcYYY4wxxmoIbvBljDHGGGOMMcYYY4yxGoIbfBljjDHGGGOMMcYYY6yG4AZfxhhjjDHGGGOMMcYYqyG4wZcxxhhjjDHGGGOMMcZqCG7wZYwxxhhjjDHGGGOMsRqCG3wZY4wxxhhjjDHGGGOshuAGX8YYY4wxxhhjjDHGGKshuMGXMcYYY4wxxhhjjDHGaghu8GWMMcYYY4wxxhhjjLEaght8GWOMMcYYY4wxxhhjrIbgBl/GGGOMMcYYY4wxxhirIf4fwEU9OpY/oJwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# to show all models in same graph\n", + "plt.figure(figsize=(17, 8))\n", + "\n", + "for model_name in models:\n", + " # to show graphs model by model\n", + " # plt.figure(figsize=(17, 8))\n", + " accs = []\n", + " aucs = []\n", + " fprs = []\n", + " tprs = []\n", + " labels = []\n", + " for distance_metric in distance_metrics:\n", + " # for detector_backend in robust_face_detectors:\n", + " for detector_backend in detectors:\n", + " for align in alignment:\n", + " if detector_backend == \"skip\" and align is True:\n", + " continue\n", + " acc, auc, fpr, tpr, label = plot_roc(model_name, detector_backend, distance_metric, align)\n", + " accs.append(acc)\n", + " aucs.append(auc)\n", + " fprs.append(fpr)\n", + " tprs.append(tpr)\n", + " labels.append(label)\n", + " # ---------------------------------\n", + " #sort by auc\n", + " df = pd.DataFrame({\"acc\": accs, \"auc\": aucs, \"fpr\": fprs, \"tpr\": tprs, \"label\": labels})\n", + " # df = df.sort_values(by = [\"auc\"], ascending = False).reset_index()\n", + " df = df.sort_values(by = [\"acc\"], ascending = False).reset_index()\n", + " \n", + " for index, instance in df.iterrows():\n", + " fpr = instance[\"fpr\"]\n", + " tpr = instance[\"tpr\"]\n", + " auc = instance[\"auc\"]\n", + " acc = instance[\"acc\"]\n", + " label = instance[\"label\"]\n", + " \n", + " plt.plot(fpr, tpr, label=label)\n", + " plt.ylabel(\"True Positive Rate\")\n", + " plt.xlabel(\"False Positive Rate\")\n", + " plt.legend(loc=\"lower center\", ncol=2)\n", + " # normally this should be [0, 1] but that scale makes graphs not legible\n", + " # plt.xlim([0, 1])\n", + " plt.xlim([0, 0.3])\n", + "\n", + " # to show the best auc value\n", + " break\n", + " \n", + " # to show graphs model by model\n", + " # plt.show()\n", + " # print(\"----------------\")\n", + "\n", + "# to show all models in same graph\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "661c5236", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}