''' import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from peft import AutoPeftModelForCausalLM import torch # Load the model and tokenizer def load_model(): # base_model_name = "unsloth/llama-3.2-1b-instruct-bnb-4bit" # Replace with your base model name lora_model_name = "sreyanghosh/lora_model" # Replace with your LoRA model path # tokenizer = AutoTokenizer.from_pretrained(base_model_name) # model = AutoModelForCausalLM.from_pretrained( # base_model_name, # device_map="auto" if torch.cuda.is_available() else None, # load_in_8bit=not torch.cuda.is_available(), # ) # model = PeftModel.from_pretrained(model, lora_model_name) model = AutoPeftModelForCausalLM.from_pretrained( lora_model_name, # YOUR MODEL YOU USED FOR TRAINING load_in_4bit = False, # False ) tokenizer = AutoTokenizer.from_pretrained(lora_model_name) model.eval() return tokenizer, model tokenizer, model = load_model() # Define the respond function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the conversation history messages = [{"role": "system", "content": system_message}] for user_input, bot_response in history: if user_input: messages.append({"role": "user", "content": user_input}) if bot_response: messages.append({"role": "assistant", "content": bot_response}) messages.append({"role": "user", "content": message}) # Format the input for the model conversation_text = "\n".join( f"{msg['role']}: {msg['content']}" for msg in messages ) inputs = tokenizer(conversation_text, return_tensors="pt", truncation=True) # Generate the model's response outputs = model.generate( inputs.input_ids, max_length=len(inputs.input_ids[0]) + max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract the new response new_response = response[len(conversation_text):].strip() yield new_response # Gradio app configuration demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() ''' import gradio as gr from transformers import AutoTokenizer from peft import AutoPeftModelForCausalLM import torch # Load the model and tokenizer def load_model(): lora_model_name = "sreyanghosh/lora_model" # Replace with your LoRA model path # Try loading without 4-bit quantization model = AutoPeftModelForCausalLM.from_pretrained( lora_model_name, torch_dtype=torch.float32, # Ensure no low-bit quantization device_map="auto" if torch.cuda.is_available() else None, # Use standard device mapping load_in_4bit=False, # Redundant, but safe to explicitly specify ) tokenizer = AutoTokenizer.from_pretrained(lora_model_name) if tokenizer.pad_token_id is None: tokenizer.pad_token_id = tokenizer.eos_token_id model.eval() device = "cuda" if torch.cuda.is_available() else "cpu" model = model.to(device) return tokenizer, model # Define the respond function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the conversation history messages = [{"role": "system", "content": system_message}] for user_input, bot_response in history: if user_input: messages.append({"role": "user", "content": user_input}) if bot_response: messages.append({"role": "assistant", "content": bot_response}) messages.append({"role": "user", "content": message}) # Format the input for the model conversation_text = "\n".join( f"{msg['role']}: {msg['content']}" for msg in messages ) inputs = tokenizer(conversation_text, return_tensors="pt", truncation=True).to(model.device) # Generate the model's response outputs = model.generate( inputs.input_ids, max_length=len(inputs.input_ids[0]) + max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, eos_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract the new response new_response = response.split("assistant:")[-1].strip() yield new_response # Gradio app configuration demo = gr.ChatInterface( fn=respond, chatbot=gr.Chatbot(label="Assistant"), # Use a Gradio Chatbot component additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()