from pdfminer.high_level import extract_pages from pdfminer.layout import LTTextContainer from tqdm import tqdm import re import gradio as gr import os import accelerate import spaces import subprocess from huggingface_hub import hf_hub_download from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles from vllm import LLM, SamplingParams # subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True) # subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True) # hf_hub_download( # repo_id="QuantFactory/Meta-Llama-3-8B-Instruct-GGUF", # filename="Meta-Llama-3-8B-Instruct.Q8_0.gguf", # local_dir = "./models" # ) # hf_hub_download( # repo_id="bartowski/Meta-Llama-3-70B-Instruct-GGUF", # filename="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf", # local_dir = "./models" # ) def process_document(pdf_path, page_ids=None): extracted_pages = extract_pages(pdf_path, page_numbers=page_ids) page2content = {} for extracted_page in tqdm(extracted_pages): page_id = extracted_page.pageid content = process_page(extracted_page) page2content[page_id] = content return page2content def process_page(extracted_page): content = [] elements = [element for element in extracted_page._objs] elements.sort(key=lambda a: a.y1, reverse=True) for i, element in enumerate(elements): if isinstance(element, LTTextContainer): line_text = extract_text_and_normalize(element) content.append(line_text) content = re.sub('\n+', ' ', ''.join(content)) return content def extract_text_and_normalize(element): # Extract text from line and split it with new lines line_texts = element.get_text().split('\n') norm_text = '' for line_text in line_texts: line_text = line_text.strip() if not line_text: line_text = '\n' else: line_text = re.sub('\s+', ' ', line_text) if not re.search('[\w\d\,\-]', line_text[-1]): line_text += '\n' else: line_text += ' ' norm_text += line_text return norm_text def txt_to_html(text): html_content = "
" for line in text.split('\n'): html_content += "{}
".format(line.strip()) html_content += "" return html_content @spaces.GPU(duration=120) def deidentify_doc(pdftext, maxtokens, temperature, top_probability): prompt = "In the following text replace any person name and any address with term [redacted], replace any Date of Birth and NHS number with term [redacted]. Output the modified text." # prompt = """ # Perform the following actions on given report: # 1. Replace any person names, age, date of birth, gender with term [redacted] # 2. Replace any addresses with term [redacted] # 3. DO NOT REPLACE ANY MEDICAL MEASUREMENTS # 4. Replace only the CALENDAR DATES of format 'day/month/year' with term [redacted] # """ # prompt = """ # Remove person names, any dates, date of birth, age, gender, registration numbers and any addresses from the following report. # """ # model = Llama( # model_path=model_id, # flash_attn=True, # n_gpu_layers=81, # n_batch=1024, # n_ctx=8192, # ) # chat_template = MessagesFormatterType.LLAMA_3 sampling_params = SamplingParams(temperature=0.8, top_p=0.95) # llm = Llama( # model_path="models/Meta-Llama-3-8B-Instruct.Q8_0.gguf", # flash_attn=True, # n_gpu_layers=81, # n_batch=1024, # n_ctx=8192, # ) llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct") outputs = llm.generate([prompt], sampling_params) output = outputs[0].outputs[0].text # provider = LlamaCppPythonProvider(llm) # agent = LlamaCppAgent( # provider, # system_prompt="You are a helpful assistant.", # predefined_messages_formatter_type=chat_template, # debug_output=True # ) # settings = provider.get_provider_default_settings() # settings.temperature = temperature # settings.top_k = 40 # settings.top_p = top_probability # settings.max_tokens = maxtokens # settings.repeat_penalty = 1.1 # settings.stream = True # messages = BasicChatHistory() # stream = agent.get_chat_response( # prompt + ' : ' + pdftext, # llm_sampling_settings=settings, # chat_history=messages, # returns_streaming_generator=True, # print_output=False # ) # output = "" # for op in stream: # output += op # output = llm.create_chat_completion( # messages=[ # {"role": "assistant", "content": prompt}, # { # "role": "user", # "content": pdftext # } # ], # max_tokens=maxtokens, # temperature=temperature # ) # output = output['choices'][0]['message']['content'] prompt = "Perform the following actions on given text: 1. Replace any person age with term [redacted] 2. DO NOT REPLACE ANY MEDICAL MEASUREMENTS 3. Replace only the CALENDAR DATES of format 'day/month/year' with term [redacted]. Output the modified text." outputs = llm.generate([output], sampling_params) output = outputs[0].outputs[0].text # output = llm.create_chat_completion( # messages=[ # {"role": "assistant", "content": prompt}, # { # "role": "user", # "content": output # } # ], # max_tokens=maxtokens, # temperature=temperature # ) # output = output['choices'][0]['message']['content'] # print(prompt) # print(output) # print('-------------------------------------------------------') return output def pdf_to_text(files, maxtokens=2048, temperature=0, top_probability=0.95): files=[files]#remove later for file in files: if not file: return 'Please provide a valid PDF' file_name = os.path.basename(file) file_name_splt = file_name.split('.') # print('File name is ', file_name) if (len(file_name_splt) > 1 and file_name_splt[1] == 'pdf'): page2content = process_document(file, page_ids=[0]) pdftext = page2content[1] print(pdftext) # pdftext = file # remove later if (pdftext): #shift this if block to right later anonymized_text = deidentify_doc(pdftext, maxtokens, temperature, top_probability) else: anonymized_text = 'PDF file appears to be corrupted.' return anonymized_text # model_id = "models/Meta-Llama-3-70B-Instruct-Q3_K_M.gguf" # model = Llama(model_path=model_id, n_ctx=2048, n_threads=8, n_gpu_layers=-1, n_batch=128) css = ".gradio-container {background: 'logo.png'}" temp_slider = gr.Slider(minimum=0, maximum=2, value=0.9, label="Temperature Value") prob_slider = gr.Slider(minimum=0, maximum=1, value=0.95, label="Max Probability Value") max_tokens = gr.Number(value=600, label="Max Tokens") input_folder = gr.File(file_count='multiple') input_folder_text = gr.Textbox(label='Enter output folder path') output_text = gr.Textbox() output_path_component = gr.File(label="Select Output Path") iface = gr.Interface( fn=pdf_to_text, inputs=['file'], # css = css, outputs=output_text, title='COBIx Endoscopy Report De-Identification', description="This application assists to remove personal information from the uploaded clinical report", theme=gr.themes.Soft(), ) iface.launch() # import spaces # import json # import subprocess # from llama_cpp import Llama # from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType # from llama_cpp_agent.providers import LlamaCppPythonProvider # from llama_cpp_agent.chat_history import BasicChatHistory # from llama_cpp_agent.chat_history.messages import Roles # import gradio as gr # from huggingface_hub import hf_hub_download # hf_hub_download( # repo_id="bartowski/Meta-Llama-3-70B-Instruct-GGUF", # filename="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf", # local_dir = "./models" # ) # # hf_hub_download( # # repo_id="bartowski/Mistral-7B-Instruct-v0.3-GGUF", # # filename="Mistral-7B-Instruct-v0.3-f32.gguf", # # local_dir = "./models" # # ) # css = """ # .message-row { # justify-content: space-evenly !important; # } # .message-bubble-border { # border-radius: 6px !important; # } # .message-buttons-bot, .message-buttons-user { # right: 10px !important; # left: auto !important; # bottom: 2px !important; # } # .dark.message-bubble-border { # border-color: #343140 !important; # } # .dark.user { # background: #1e1c26 !important; # } # .dark.assistant.dark, .dark.pending.dark { # background: #16141c !important; # } # """ # def get_messages_formatter_type(model_name): # if "Llama" in model_name: # return MessagesFormatterType.LLAMA_3 # elif "Mistral" in model_name: # return MessagesFormatterType.MISTRAL # else: # raise ValueError(f"Unsupported model: {model_name}") # @spaces.GPU(duration=60) # def respond( # message, # history: list[tuple[str, str]], # model, # system_message, # max_tokens, # temperature, # top_p, # top_k, # repeat_penalty, # ): # chat_template = get_messages_formatter_type(model) # llm = Llama( # model_path=f"models/{model}", # flash_attn=True, # n_gpu_layers=81, # n_batch=1024, # n_ctx=8192, # ) # provider = LlamaCppPythonProvider(llm) # agent = LlamaCppAgent( # provider, # system_prompt=f"{system_message}", # predefined_messages_formatter_type=chat_template, # debug_output=True # ) # settings = provider.get_provider_default_settings() # settings.temperature = temperature # settings.top_k = top_k # settings.top_p = top_p # settings.max_tokens = max_tokens # settings.repeat_penalty = repeat_penalty # settings.stream = True # messages = BasicChatHistory() # for msn in history: # user = { # 'role': Roles.user, # 'content': msn[0] # } # assistant = { # 'role': Roles.assistant, # 'content': msn[1] # } # messages.add_message(user) # messages.add_message(assistant) # stream = agent.get_chat_response( # message, # llm_sampling_settings=settings, # chat_history=messages, # returns_streaming_generator=True, # print_output=False # ) # outputs = "" # for output in stream: # outputs += output # yield outputs # PLACEHOLDER = """ # # """ # demo = gr.ChatInterface( # respond, # additional_inputs=[ # gr.Dropdown([ # 'Meta-Llama-3-70B-Instruct-Q3_K_M.gguf', # 'Mistral-7B-Instruct-v0.3-f32.gguf' # ], # value="Meta-Llama-3-70B-Instruct-Q3_K_M.gguf", # label="Model" # ), # gr.Textbox(value="You are a helpful assistant.", label="System message"), # gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p", # ), # gr.Slider( # minimum=0, # maximum=100, # value=40, # step=1, # label="Top-k", # ), # gr.Slider( # minimum=0.0, # maximum=2.0, # value=1.1, # step=0.1, # label="Repetition penalty", # ), # ], # theme=gr.themes.Soft(primary_hue="violet", secondary_hue="violet", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( # body_background_fill_dark="#16141c", # block_background_fill_dark="#16141c", # block_border_width="1px", # block_title_background_fill_dark="#1e1c26", # input_background_fill_dark="#292733", # button_secondary_background_fill_dark="#24212b", # border_color_accent_dark="#343140", # border_color_primary_dark="#343140", # background_fill_secondary_dark="#16141c", # color_accent_soft_dark="transparent", # code_background_fill_dark="#292733", # ), # css=css, # retry_btn="Retry", # undo_btn="Undo", # clear_btn="Clear", # submit_btn="Send", # description="Llama-cpp-agent: Chat multi llm selection", # chatbot=gr.Chatbot( # scale=1, # placeholder=PLACEHOLDER, # likeable=False, # show_copy_button=True # ) # ) # # if __name__ == "__main__": # demo.launch()