import matplotlib.pyplot as plt
import numpy as np
import os, cv2
import glob
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torchvision.utils import make_grid, save_image
from gan_losses import get_gan_losses
from PIL import Image
import torchvision.utils as vutils

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

"""## Load Data"""

# data_variance = np.var(training_data.data / 255.0)
data_variance = 1

def mkdir(dir):
    if not os.path.exists(dir):
        os.makedirs(dir)

def read_image(img_path):
    img = cv2.imread(img_path)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img = img / 255.0
    return img

class VectorQuantizer(nn.Module):
    def __init__(self, num_embeddings, embedding_dim, commitment_cost):
        super(VectorQuantizer, self).__init__()
        
        self._embedding_dim = embedding_dim
        self._num_embeddings = num_embeddings

        #codebook
        self._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)
        self._embedding.weight.data.uniform_(-1/self._num_embeddings, 1/self._num_embeddings)
        self._commitment_cost = commitment_cost

    def forward(self, inputs):
        # convert inputs from BCHW -> BHWC
        inputs = inputs.permute(0, 2, 3, 1).contiguous()
        input_shape = inputs.shape
        
        # Flatten input
        flat_input = inputs.view(-1, self._embedding_dim)
        
        # Calculate distances
        distances = (torch.sum(flat_input**2, dim=1, keepdim=True) 
                    + torch.sum(self._embedding.weight**2, dim=1)
                    - 2 * torch.matmul(flat_input, self._embedding.weight.t()))
            
        # Encoding
        encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
        encodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)
        encodings.scatter_(1, encoding_indices, 1)

        
        # Quantize and unflatten
        quantized = torch.matmul(encodings, self._embedding.weight).view(input_shape)
        
        # Loss
        e_latent_loss = F.mse_loss(quantized.detach(), inputs)
        q_latent_loss = F.mse_loss(quantized, inputs.detach())
        loss = q_latent_loss + self._commitment_cost * e_latent_loss
        
        quantized = inputs + (quantized - inputs).detach()
        avg_probs = torch.mean(encodings, dim=0)
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
        
        # convert quantized from BHWC -> BCHW
        return loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encoding_indices

class VectorQuantizerEMA(nn.Module):
    def __init__(self, num_embeddings, embedding_dim, commitment_cost, decay, epsilon=1e-5):
        super(VectorQuantizerEMA, self).__init__()
        
        self._embedding_dim = embedding_dim
        self._num_embeddings = num_embeddings
        
        self._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)
        self._embedding.weight.data.normal_()
        self._commitment_cost = commitment_cost
        
        self.register_buffer('_ema_cluster_size', torch.zeros(num_embeddings))
        self._ema_w = nn.Parameter(torch.Tensor(num_embeddings, self._embedding_dim))
        self._ema_w.data.normal_()
        
        self._decay = decay
        self._epsilon = epsilon

    def forward(self, inputs):

        # convert inputs from BCHW -> BHWC
        inputs = inputs.permute(0, 2, 3, 1).contiguous()
        input_shape = inputs.shape
        
        # Flatten input
        flat_input = inputs.view(-1, self._embedding_dim)
        
        # Calculate distances
        distances = (torch.sum(flat_input**2, dim=1, keepdim=True) 
                    + torch.sum(self._embedding.weight**2, dim=1)
                    - 2 * torch.matmul(flat_input, self._embedding.weight.t()))

        # Encoding
        encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
        # encoding_indices[encoding_indices == 3] = 4 # 1 means background, 2 means epithelial cells, 4 means connective, 3 means neutrophil, 5 means plasma, 6 lymphocytes
        encodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)
        encodings.scatter_(1, encoding_indices, 1)
        
        # Quantize and unflatten
        quantized = torch.matmul(encodings, self._embedding.weight).view(input_shape)

        # Use EMA to update the embedding vectors
        if self.training:
            self._ema_cluster_size = self._ema_cluster_size * self._decay + \
                                     (1 - self._decay) * torch.sum(encodings, 0)
            
            # Laplace smoothing of the cluster size
            n = torch.sum(self._ema_cluster_size.data)
            self._ema_cluster_size = (
                (self._ema_cluster_size + self._epsilon)
                / (n + self._num_embeddings * self._epsilon) * n)
            
            dw = torch.matmul(encodings.t(), flat_input)
            self._ema_w = nn.Parameter(self._ema_w * self._decay + (1 - self._decay) * dw)
            
            self._embedding.weight = nn.Parameter(self._ema_w / self._ema_cluster_size.unsqueeze(1))
        
        # Loss
        e_latent_loss = F.mse_loss(quantized.detach(), inputs)
        loss = self._commitment_cost * e_latent_loss
        
        # Straight Through Estimator
        quantized = inputs + (quantized - inputs).detach()
        avg_probs = torch.mean(encodings, dim=0)
        perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))

        # convert quantized from BHWC -> BCHW
        return loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encoding_indices

class Residual(nn.Module):
    def __init__(self, in_channels, num_hiddens, num_residual_hiddens):
        super(Residual, self).__init__()
        self._block = nn.Sequential(
            nn.ReLU(True),
            nn.Conv2d(in_channels=in_channels,
                      out_channels=num_residual_hiddens,
                      kernel_size=3, stride=1, padding=1, bias=False),
            nn.ReLU(True),
            nn.Conv2d(in_channels=num_residual_hiddens,
                      out_channels=num_hiddens,
                      kernel_size=1, stride=1, bias=False)
        )
    
    def forward(self, x):
        return x + self._block(x)

class ResidualStack(nn.Module):
    def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):
        super(ResidualStack, self).__init__()
        self._num_residual_layers = num_residual_layers
        self._layers = nn.ModuleList([Residual(in_channels, num_hiddens, num_residual_hiddens)
                             for _ in range(self._num_residual_layers)])

    def forward(self, x):
        for i in range(self._num_residual_layers):
            x = self._layers[i](x)
        return F.relu(x)

class Encoder(nn.Module):

    def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens, embedding_dim):
        super(Encoder, self).__init__()

        self._conv_1 = nn.Conv2d(in_channels=in_channels,
                                 out_channels=num_hiddens//2,
                                 kernel_size=4,
                                 stride=2, padding=1)
        self._conv_2 = nn.Conv2d(in_channels=num_hiddens//2,
                                 out_channels=num_hiddens,
                                 kernel_size=4,
                                 stride=2, padding=1)
        self._conv_3 = nn.Conv2d(in_channels=num_hiddens,
                                 out_channels=num_hiddens,
                                 kernel_size=3,
                                 stride=1, padding=1)
        self._residual_stack = ResidualStack(in_channels=num_hiddens,
                                             num_hiddens=num_hiddens,
                                             num_residual_layers=num_residual_layers,
                                             num_residual_hiddens=num_residual_hiddens)

        self._pre_vq_conv = nn.Conv2d(in_channels=num_hiddens,
                                      out_channels=embedding_dim,
                                      kernel_size=1,
                                      stride=1)

        self.apply_tanh = nn.Tanh()

    def forward(self, inputs):

        x = self._conv_1(inputs)
        x = F.relu(x)
        
        x = self._conv_2(x)
        x = F.relu(x)
        
        x = self._conv_3(x)

        x = self._residual_stack(x)

        x = self._pre_vq_conv(x)

        return x

class Decoder(nn.Module):
    def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):
        super(Decoder, self).__init__()
        
        self._conv_1 = nn.Conv2d(in_channels=in_channels,
                                 out_channels=num_hiddens,
                                 kernel_size=3, 
                                 stride=1, padding=1)
        
        self._residual_stack = ResidualStack(in_channels=num_hiddens,
                                             num_hiddens=num_hiddens,
                                             num_residual_layers=num_residual_layers,
                                             num_residual_hiddens=num_residual_hiddens)
        
        self._conv_trans_1 = nn.ConvTranspose2d(in_channels=num_hiddens, 
                                                out_channels=num_hiddens//2,
                                                kernel_size=4, 
                                                stride=2, padding=1)
        
        self._conv_trans_2 = nn.ConvTranspose2d(in_channels=num_hiddens//2, 
                                                out_channels=3,
                                                kernel_size=4, 
                                                stride=2, padding=1)

        self.apply_tanh = nn.Tanh()

    def forward(self, inputs):
        x = self._conv_1(inputs)
        
        x = self._residual_stack(x)
        
        x = self._conv_trans_1(x)
        x = F.relu(x)

        x = self._conv_trans_2(x)
        
        return self.apply_tanh(x)

class VQModel(nn.Module):

    def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens,
                 num_embeddings, embedding_dim, commitment_cost, decay=0):
        super(VQModel, self).__init__()

        self._encoder = Encoder(3, num_hiddens,
                                num_residual_layers,
                                num_residual_hiddens,
                                embedding_dim)

        if decay > 0.0:
            self._vq_vae = VectorQuantizerEMA(num_embeddings, embedding_dim,
                                              commitment_cost, decay)
        else:
            self._vq_vae = VectorQuantizer(num_embeddings, embedding_dim,
                                           commitment_cost)
        self._decoder = Decoder(embedding_dim,
                                num_hiddens,
                                num_residual_layers,
                                num_residual_hiddens)

    def forward(self, x):
        z = self._encoder(x)
        loss, quantized, perplexity, _ = self._vq_vae(z)
        x_recon = self._decoder(quantized)

        return loss, x_recon, perplexity

def save_generated_images(image_names, batch_images, ind, mode, type):
    current_output_dir = os.path.join(output_dir, mode, type)
    mkdir(current_output_dir)
    num_images = batch_images.shape[0]
    for i in range(0,num_images):
        save_image(batch_images[i], os.path.join(current_output_dir,image_names[i]))

def generate_images_from_diffusion_latents(model, latents_path, output_dir):
    latent_paths = glob.glob(os.path.join(latents_path, "*.pt"))
    for latent_path in latent_paths:
        latent = torch.load(latent_path).cuda()
        latent = latent.detach()
        _, quantized_latent, _, _ = model._vq_vae(latent)
        image = model._decoder(quantized_latent)
        image_name = os.path.basename(latent_path).split(".")[0]+".png"
        save_image(image, os.path.join(output_dir, image_name))

class UNetDown(nn.Module):
    def __init__(self, in_size, out_size, normalize=True, dropout=0.0):
        super(UNetDown, self).__init__()
        layers = [nn.Conv2d(in_size, out_size, 4, 2, 1, bias=False)]
        if normalize:
            layers.append(nn.InstanceNorm2d(out_size))
        layers.append(nn.LeakyReLU(0.2))
        if dropout:
            layers.append(nn.Dropout(dropout))
        self.model = nn.Sequential(*layers)

    def forward(self, x):
        return self.model(x)

class UNetUp(nn.Module):
    def __init__(self, in_size, out_size, dropout=0.0):
        super(UNetUp, self).__init__()
        layers = [
            nn.ConvTranspose2d(in_size, out_size, 4, 2, 1, bias=False),
            nn.InstanceNorm2d(out_size),
            nn.ReLU(inplace=True),
        ]
        if dropout:
            layers.append(nn.Dropout(dropout))

        self.model = nn.Sequential(*layers)

    def forward(self, x, skip_input):
        x = self.model(x)
        x = torch.cat((x, skip_input), 1)

        return x

class Pix2PixGenerator(nn.Module):
    def __init__(self, in_channels=3, out_channels=3):
        super(Pix2PixGenerator, self).__init__()

        self.down1 = UNetDown(in_channels, 64, normalize=False)
        self.down2 = UNetDown(64, 128)
        self.down3 = UNetDown(128, 256)
        self.down4 = UNetDown(256, 512, dropout=0.5)
        self.down5 = UNetDown(512, 512, dropout=0.5)
        self.down6 = UNetDown(512, 512, dropout=0.5)
        self.down7 = UNetDown(512, 512, dropout=0.5)
        self.down8 = UNetDown(512, 512, normalize=False, dropout=0.5)

        self.up1 = UNetUp(512, 512, dropout=0.5)
        self.up2 = UNetUp(1024, 512, dropout=0.5)
        self.up3 = UNetUp(1024, 512, dropout=0.5)
        self.up4 = UNetUp(1024, 512, dropout=0.5)
        self.up5 = UNetUp(1024, 256)
        self.up6 = UNetUp(512, 128)
        self.up7 = UNetUp(256, 64)

        self.final = nn.Sequential(
            nn.Upsample(scale_factor=2),
            nn.ZeroPad2d((1, 0, 1, 0)),
            nn.Conv2d(128, out_channels, 4, padding=1),
            nn.Tanh(),
        )


    def forward(self, x):
        # U-Net generator with skip connections from encoder to decoder
        d1 = self.down1(x)
        d2 = self.down2(d1)
        d3 = self.down3(d2)
        d4 = self.down4(d3)
        d5 = self.down5(d4)
        d6 = self.down6(d5)
        d7 = self.down7(d6)
        d8 = self.down8(d7)
        u1 = self.up1(d8, d7)
        u2 = self.up2(u1, d6)
        u3 = self.up3(u2, d5)
        u4 = self.up4(u3, d4)
        u5 = self.up5(u4, d3)
        u6 = self.up6(u5, d2)
        u7 = self.up7(u6, d1)
        return self.final(u7)

batch_size = 32 #Keep 16 for good results
num_training_updates = 30000

num_hiddens = 32 #Original: 128 , 32 used for masks
num_residual_hiddens = 32
num_residual_layers = 2 #Original was 2

embedding_dim = 3
num_embeddings = 2 #number of codebook vectors
commitment_cost = 0.25
decay = 0.99

model_name = "dp_bimask_2dim_1024size_tanhindecoder.pt"

def create_mask(model_dir, latents_path, final_output_dir):

    model = VQModel(num_hiddens, num_residual_layers, num_residual_hiddens,
                      num_embeddings, embedding_dim,
                      commitment_cost, decay).to(device)

    model.load_state_dict(torch.load(os.path.join(model_dir,model_name)))

    model.eval()

    mkdir(final_output_dir)
    generate_images_from_diffusion_latents(model=model,
                                           latents_path=latents_path,
                                           output_dir=final_output_dir)