import gradio as gr import pickle from model import CustomModel from preprocess import preprocess_pipeline, vectorizer import os os.system("cp -r ./nltk_data/ /home/user/nltk_data") def analyze(text): model = CustomModel() text = preprocess_pipeline(text) vector = vectorizer([text]).toarray() pred = model.predict(vector) label_encoder = pickle.load(open("encoders/label_encoder.pkl", "rb")) pred = label_encoder.inverse_transform(pred)[0] pred = pred[pred.find('(')+1:pred.find(')')] return pred app = gr.Interface( fn=analyze, inputs=gr.Textbox(label="Argument", lines=4, placeholder="Enter argument here..."), outputs=gr.Textbox(label="Quality", lines=1, placeholder="Predicted quality will be displayed here..."), title="Argument Quality Analyzer" ) # app.launch(share="True") app.launch()