from langchain.document_loaders import PyPDFLoader from langchain_together.embeddings import TogetherEmbeddings import faiss import os import time import numpy as np import pickle os.environ["TOGETHER_API_KEY"] = st.secrets["together_api_key"] embeddings = TogetherEmbeddings(model="togethercomputer/m2-bert-80M-8k-retrieval") loader = PyPDFLoader("ship.pdf") data = loader.load() print (f'You have {len(data)} document(s) in your data') print (f'There are {len(data[0].page_content)} characters in your sample document') print (f'Here is a sample: {data[0].page_content}') list_of_texts = [] list_of_embeddings = [] for val in data: text_content = val.page_content list_of_texts.append(text_content) embedding_vector = embeddings.embed_query(text_content) list_of_embeddings.append(embedding_vector) embeddings_array = np.array(list_of_embeddings).astype('float32') d = len(list_of_embeddings[0]) index = faiss.IndexFlatL2(d) index.add(embeddings_array) # Save the index faiss.write_index(index, "faiss.index") # Save the list of texts with open("list_of_texts.pkl", 'wb') as f: pickle.dump(list_of_texts, f)