import streamlit as st from PIL import Image from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig import subprocess subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) # Function to load the model and processor @st.cache_resource def load_model_and_processor(): config = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True) config.vision_config.model_type = "davit" model = AutoModelForCausalLM.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True).eval() processor = AutoProcessor.from_pretrained("sujet-ai/Lutece-Vision-Base", config=config, trust_remote_code=True) return model, processor # Function to generate answer def generate_answer(model, processor, image, prompt): task = "" inputs = processor(text=prompt, images=image, return_tensors="pt") generated_ids = model.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, do_sample=False, num_beams=3, ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height)) return parsed_answer[task] # Function to display config without nested expanders def display_config(config, depth=0): for key, value in config.items(): if isinstance(value, dict): st.markdown(f"{' ' * depth}**{key}**:") display_config(value, depth + 1) else: st.markdown(f"{' ' * depth}{key}: {value}") # Streamlit app def main(): st.set_page_config(page_title="Lutece-Vision-Base Demo", page_icon="🗼", layout="wide", initial_sidebar_state="expanded") # Title and description st.title("🗼 Lutece-Vision-Base Demo") st.markdown("Upload a financial document and ask questions about it!") # Sidebar with SujetAI watermark st.sidebar.image("sujetAI.svg", use_column_width=True) st.sidebar.markdown("---") st.sidebar.markdown("Our website : [sujet.ai](https://sujet.ai)") # Load model and processor model, processor = load_model_and_processor() # File uploader for document uploaded_file = st.file_uploader("📄 Upload a financial document", type=["png", "jpg", "jpeg"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert('RGB') st.image(image, caption="Uploaded Document", use_column_width=True) # Question input question = st.text_input("❓ Ask a question about the document", "") if st.button("🔍 Generate Answer"): with st.spinner("Generating answer..."): answer = generate_answer(model, processor, image, question) st.success(f"## 💡 {answer}") # # Model configuration viewer # with st.expander("🔧 Model Configuration"): # config_dict = model.config.to_dict() # display_config(config_dict) if __name__ == "__main__": main()