# WebUI by mrfakename # Demo also available on HF Spaces: https://huggingface.co/spaces/mrfakename/MeloTTS import gradio as gr import os, torch, io os.system('python -m unidic download') # print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.") from melo.api import TTS speed = 1.0 import tempfile import nltk nltk.download('averaged_perceptron_tagger_eng') device = 'cuda' if torch.cuda.is_available() else 'cpu' models = { 'EN': TTS(language='EN', device=device), 'ES': TTS(language='ES', device=device), 'FR': TTS(language='FR', device=device), 'ZH': TTS(language='ZH', device=device), 'JP': TTS(language='JP', device=device), 'KR': TTS(language='KR', device=device), } speaker_ids = models['EN'].hps.data.spk2id default_text_dict = { 'EN': 'The field of text-to-speech has seen rapid development recently.', 'ES': 'El campo de la conversión de texto a voz ha experimentado un rápido desarrollo recientemente.', 'FR': 'Le domaine de la synthèse vocale a connu un développement rapide récemment', 'ZH': 'text-to-speech 领域近年来发展迅速', 'JP': 'テキスト読み上げの分野は最近急速な発展を遂げています', 'KR': '최근 텍스트 음성 변환 분야가 급속도로 발전하고 있습니다.', } def synthesize(text, speaker, speed, language, progress=gr.Progress()): bio = io.BytesIO() models[language].tts_to_file(text, models[language].hps.data.spk2id[speaker], bio, speed=speed, pbar=progress.tqdm, format='wav') return bio.getvalue() def load_speakers(language, text): if text in list(default_text_dict.values()): newtext = default_text_dict[language] else: newtext = text return gr.update(value=list(models[language].hps.data.spk2id.keys())[0], choices=list(models[language].hps.data.spk2id.keys())), newtext with gr.Blocks() as demo: gr.Markdown('# MeloTTS Demo\n\nAn unofficial demo for [MeloTTS](https://github.com/myshell-ai/MeloTTS). **Make sure to try out several speakers, for example EN-Default!**') with gr.Group(): speaker = gr.Dropdown(speaker_ids.keys(), interactive=True, value='EN-US', label='Speaker') language = gr.Radio(['EN', 'ES', 'FR', 'ZH', 'JP', 'KR'], label='Language', value='EN') speed = gr.Slider(label='Speed', minimum=0.1, maximum=10.0, value=1.0, interactive=True, step=0.1) text = gr.Textbox(label="Text to speak", value=default_text_dict['EN']) language.input(load_speakers, inputs=[language, text], outputs=[speaker, text]) btn = gr.Button('Synthesize', variant='primary') aud = gr.Audio(interactive=False) btn.click(synthesize, inputs=[text, speaker, speed, language], outputs=[aud]) gr.Markdown('Demo by [mrfakename](https://twitter.com/realmrfakename).') demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True)