from huggingface_hub import hf_hub_download import joblib import gradio as gr import numpy as np # Download the model from Hugging Face Hub model_path = hf_hub_download(repo_id="suryadev1/knn", filename="knn_model.pkl") # Load the model knn = joblib.load(model_path) # Define the prediction function def predict(input_data): # Convert input_data to numpy array input_data = np.array(input_data).reshape(1, -1) # Make predictions predictions = knn.predict([[0.2,0.03,0.0,1.0,0.0]]) return predictions[0] # Create Gradio interface # Adjust the input components based on the number of features your model expects input_components = [gr.inputs.Number(label=f"Feature {i+1}") for i in range(4)] output_component = gr.outputs.Textbox(label="Prediction") iface = gr.Interface( fn=predict, inputs=input_components, outputs=output_component, title="KNN Model Prediction", description="Enter values for each feature to get a prediction." ) # Launch the interface iface.launch()