#from summary_reverse_pred_native import * #### daspartho/prompt-extend import os os.system("pip install huggingface_hub") from huggingface_hub import space_info import gradio as gr #import os from predict import * #device = "cuda:0" device = "cpu" assert device.startswith("cpu") or device.startswith("cuda") from transformers import ( T5ForConditionalGeneration, MT5ForConditionalGeneration, ByT5Tokenizer, PreTrainedTokenizer, T5TokenizerFast as T5Tokenizer, MT5TokenizerFast as MT5Tokenizer, AutoModelForSeq2SeqLM, AutoTokenizer, BertTokenizer, GPT2LMHeadModel, ) #### "svjack/prompt-extend-chinese-gpt" #model_path = "/home/featurize/zh_p_extend_outputs/simplet5-epoch-3-train-loss-1.2628-val-loss-1.6293" model_path = "svjack/prompt-extend-chinese-gpt" tokenizer1 = BertTokenizer.from_pretrained(model_path) model1 = GPT2LMHeadModel.from_pretrained(model_path) if device.startswith("cuda"): zh_pe_model = Obj(model1, tokenizer1, device = "cuda:0") else: zh_pe_model = Obj(model1, tokenizer1, device = "cpu") def one_ele_trans(x): x = x.strip() x = x[1:] if x.startswith("'") else x x = x[:-1] if x.endswith("'") else x x = x[1:] if x.startswith('"') else x x = x[:-1] if x.endswith('"') else x return x def stdf_prompt_expander(x, do_sample): assert type(x) == type("") return zh_pe_model.predict( one_ele_trans(x.strip()).strip(), max_length = 128, do_sample = do_sample )[0].replace(" ", "").strip() #text0 = "飓风格特是1993年9月在墨西哥和整个中美洲引发严重洪灾的大规模热带气旋,源于9月14日西南加勒比海上空一股东风波。次日从尼加拉瓜登岸,经过洪都拉斯后于9月17日在洪都拉斯湾再次达到热带风暴标准,但次日进入伯利兹上空后就减弱成热带低气压。穿过尤卡坦半岛后,在9月20日强化成二级飓风,从韦拉克鲁斯州的图斯潘附近登陆墨西哥。9月21日从纳亚里特州进入太平洋时已降级成热带低气压,最终于5天后在开放水域上空消散。" #text1 = "珊瑚坝是长江中的一处河漫滩,位于长江重庆市渝中区区段主航道左侧[1],靠近渝中半岛,原分属重庆市市中区菜园坝街道和石板坡街道[2],现属渝中区菜园坝街道石板坡社区[3],是长江上游缓冲地段自然冲积沙洲,略呈纺锤形[4]或椭圆形,长约1800米,宽约600米,坝上遍布鹅卵石和水草。每年夏季洪水时均被淹没,其余时间常露水面,枯水期则与长江左岸相连[5]。" prompt = "一只凶猛的老虎,咬死了一只豺狼。" example_sample = [ [prompt, False], #[text1, False], ] markdown_exp_size = "##" lora_repo = "svjack/chatglm3-few-shot" lora_repo_link = "svjack/chatglm3-few-shot/?input_list_index=9" emoji_info = space_info(lora_repo).__dict__["cardData"]["emoji"] space_cnt = 1 task_name = "[---Stable Diffusion Chinese Prompt Extend---]" description = f"{markdown_exp_size} {task_name} few shot prompt in ChatGLM3 Few Shot space repo (click submit to activate) : [{lora_repo_link}](https://huggingface.co/spaces/{lora_repo_link}) {emoji_info}" def demo_func(prefix, do_sample): #l = simple_pred(prefix, do_sample = do_sample) x = stdf_prompt_expander(prefix, do_sample = do_sample) return { "Prompt extend": x } demo = gr.Interface( fn=demo_func, inputs=[gr.Text(label = "Prompt"), gr.Checkbox(label="do sample"), ], outputs="json", title=f"Stable Diffusion Chinese Prompt Extend 🐰 demonstration", description = 'This _example_ was **drive** from

[https://github.com/svjack/Stable-Diffusion-Chinese-Extend](https://github.com/svjack/Stable-Diffusion-Chinese-Extend)

\n', #description = description, examples=example_sample if example_sample else None, cache_examples = False ) with demo: gr.HTML( '''
''' ) demo.launch(server_name=None, server_port=None)