#from summary_reverse_pred_native import *
#### daspartho/prompt-extend
import os
os.system("pip install huggingface_hub")
from huggingface_hub import space_info
import gradio as gr
#import os
from predict import *
#device = "cuda:0"
device = "cpu"
assert device.startswith("cpu") or device.startswith("cuda")
from transformers import (
T5ForConditionalGeneration,
MT5ForConditionalGeneration,
ByT5Tokenizer,
PreTrainedTokenizer,
T5TokenizerFast as T5Tokenizer,
MT5TokenizerFast as MT5Tokenizer,
AutoModelForSeq2SeqLM,
AutoTokenizer,
BertTokenizer,
GPT2LMHeadModel,
)
#### "svjack/prompt-extend-chinese-gpt"
#model_path = "/home/featurize/zh_p_extend_outputs/simplet5-epoch-3-train-loss-1.2628-val-loss-1.6293"
model_path = "svjack/prompt-extend-chinese-gpt"
tokenizer1 = BertTokenizer.from_pretrained(model_path)
model1 = GPT2LMHeadModel.from_pretrained(model_path)
if device.startswith("cuda"):
zh_pe_model = Obj(model1, tokenizer1, device = "cuda:0")
else:
zh_pe_model = Obj(model1, tokenizer1, device = "cpu")
def one_ele_trans(x):
x = x.strip()
x = x[1:] if x.startswith("'") else x
x = x[:-1] if x.endswith("'") else x
x = x[1:] if x.startswith('"') else x
x = x[:-1] if x.endswith('"') else x
return x
def stdf_prompt_expander(x, do_sample):
assert type(x) == type("")
return zh_pe_model.predict(
one_ele_trans(x.strip()).strip(),
max_length = 128,
do_sample = do_sample
)[0].replace(" ", "").strip()
#text0 = "飓风格特是1993年9月在墨西哥和整个中美洲引发严重洪灾的大规模热带气旋,源于9月14日西南加勒比海上空一股东风波。次日从尼加拉瓜登岸,经过洪都拉斯后于9月17日在洪都拉斯湾再次达到热带风暴标准,但次日进入伯利兹上空后就减弱成热带低气压。穿过尤卡坦半岛后,在9月20日强化成二级飓风,从韦拉克鲁斯州的图斯潘附近登陆墨西哥。9月21日从纳亚里特州进入太平洋时已降级成热带低气压,最终于5天后在开放水域上空消散。"
#text1 = "珊瑚坝是长江中的一处河漫滩,位于长江重庆市渝中区区段主航道左侧[1],靠近渝中半岛,原分属重庆市市中区菜园坝街道和石板坡街道[2],现属渝中区菜园坝街道石板坡社区[3],是长江上游缓冲地段自然冲积沙洲,略呈纺锤形[4]或椭圆形,长约1800米,宽约600米,坝上遍布鹅卵石和水草。每年夏季洪水时均被淹没,其余时间常露水面,枯水期则与长江左岸相连[5]。"
prompt = "一只凶猛的老虎,咬死了一只豺狼。"
example_sample = [
[prompt, False],
#[text1, False],
]
markdown_exp_size = "##"
lora_repo = "svjack/chatglm3-few-shot"
lora_repo_link = "svjack/chatglm3-few-shot/?input_list_index=9"
emoji_info = space_info(lora_repo).__dict__["cardData"]["emoji"]
space_cnt = 1
task_name = "[---Stable Diffusion Chinese Prompt Extend---]"
description = f"{markdown_exp_size} {task_name} few shot prompt in ChatGLM3 Few Shot space repo (click submit to activate) : [{lora_repo_link}](https://huggingface.co/spaces/{lora_repo_link}) {emoji_info}"
def demo_func(prefix, do_sample):
#l = simple_pred(prefix, do_sample = do_sample)
x = stdf_prompt_expander(prefix, do_sample = do_sample)
return {
"Prompt extend": x
}
demo = gr.Interface(
fn=demo_func,
inputs=[gr.Text(label = "Prompt"),
gr.Checkbox(label="do sample"),
],
outputs="json",
title=f"Stable Diffusion Chinese Prompt Extend 🐰 demonstration",
description = 'This _example_ was **drive** from [https://github.com/svjack/Stable-Diffusion-Chinese-Extend](https://github.com/svjack/Stable-Diffusion-Chinese-Extend)
\n',
#description = description,
examples=example_sample if example_sample else None,
cache_examples = False
)
with demo:
gr.HTML(
'''