import streamlit as st
from io import BytesIO
import ibm_watsonx_ai
import secretsload
import genparam
import requests
import time
import re
from ibm_watsonx_ai.foundation_models import ModelInference
from ibm_watsonx_ai import Credentials, APIClient
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams
from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams
from secretsload import load_stsecrets
credentials = load_stsecrets()
st.set_page_config(
page_title="Jimmy",
page_icon="😒",
initial_sidebar_state="collapsed"
)
# Password protection
def check_password():
def password_entered():
if st.session_state["password"] == st.secrets["app_password"]:
st.session_state["password_correct"] = True
del st.session_state["password"]
else:
st.session_state["password_correct"] = False
if "password_correct" not in st.session_state:
st.markdown("\n\n")
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
st.divider()
st.info("Developed by Milan Mrdenovic © IBM Norway 2024")
return False
elif not st.session_state["password_correct"]:
st.markdown("\n\n")
st.text_input("Enter the password", type="password", on_change=password_entered, key="password")
st.divider()
st.info("Developed by Milan Mrdenovic © IBM Norway 2024")
st.error("😕 Password incorrect")
return False
else:
return True
if not check_password():
st.stop()
# Initialize session state
if 'current_page' not in st.session_state:
st.session_state.current_page = 0
def initialize_session_state():
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
def setup_client():
credentials = Credentials(
url=st.secrets["url"],
api_key=st.secrets["api_key"]
)
return APIClient(credentials, project_id=st.secrets["project_id"])
def prepare_prompt(prompt, chat_history):
if genparam.TYPE == "chat" and chat_history:
chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history])
return f"Conversation History:\n{chats}\n\nNew Message: {prompt}"
return prompt
def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax):
model_family_syntax = {
"llama3-instruct (llama-3 & 3.1) - system": """\n<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
"llama3-instruct (llama-3 & 3.1) - user": """\n<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""",
"granite-13b-chat & instruct - system": """\n<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
"granite-13b-chat & instruct - user": """\n<|user|>\n{prompt}\n<|assistant|>\n\n""",
"llama2-chat - system": """\n[INST] <>\n{system_prompt}\n<>\n\n{prompt} [/INST] """,
"llama2-chat - user": """\n[INST] {prompt} [/INST] """,
"mistral & mixtral v2 tokenizer - system": """\n[INST] System Prompt:[{system_prompt}]\n\n{prompt} [/INST] """,
"mistral & mixtral v2 tokenizer - user": """\n[INST] {prompt} [/INST] """
}
if bake_in_prompt_syntax:
template = model_family_syntax[prompt_template]
if system_prompt:
return template.format(system_prompt=system_prompt, prompt=prompt)
return prompt
def generate_response(watsonx_llm, prompt_data, params):
generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params)
for chunk in generated_response:
yield chunk
def chat_interface():
st.subheader("Jimmy")
# User input
user_input = st.chat_input("You:", key="user_input")
if user_input:
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": user_input})
# Prepare the prompt
prompt = prepare_prompt(user_input, st.session_state.chat_history)
# Apply prompt syntax
prompt_data = apply_prompt_syntax(
prompt,
genparam.SYSTEM_PROMPT,
genparam.PROMPT_TEMPLATE,
genparam.BAKE_IN_PROMPT_SYNTAX
)
# Setup client and model
client = setup_client()
watsonx_llm = ModelInference(
api_client=client,
model_id=genparam.SELECTED_MODEL,
verify=genparam.VERIFY
)
# Prepare parameters
params = {
GenParams.DECODING_METHOD: genparam.DECODING_METHOD,
GenParams.MAX_NEW_TOKENS: genparam.MAX_NEW_TOKENS,
GenParams.MIN_NEW_TOKENS: genparam.MIN_NEW_TOKENS,
GenParams.REPETITION_PENALTY: genparam.REPETITION_PENALTY,
GenParams.STOP_SEQUENCES: genparam.STOP_SEQUENCES
}
# Generate and stream response
with st.chat_message("Jimmy", avatar="😒"):
stream = generate_response(watsonx_llm, prompt_data, params)
response = st.write_stream(stream)
# Add AI response to chat history
st.session_state.chat_history.append({"role": "Jimmy", "content": response})
def main():
initialize_session_state()
chat_interface()
if __name__ == "__main__":
main()