import streamlit as st from io import BytesIO import ibm_watsonx_ai import secretsload import genparam import requests import time import re from ibm_watsonx_ai.foundation_models import ModelInference from ibm_watsonx_ai import Credentials, APIClient from ibm_watsonx_ai.metanames import GenTextParamsMetaNames as GenParams from ibm_watsonx_ai.metanames import GenTextReturnOptMetaNames as RetParams from secretsload import load_stsecrets credentials = load_stsecrets() st.set_page_config( page_title="Jimmy", page_icon="😒", initial_sidebar_state="collapsed" ) # Password protection def check_password(): def password_entered(): if st.session_state["password"] == st.secrets["app_password"]: st.session_state["password_correct"] = True del st.session_state["password"] else: st.session_state["password_correct"] = False if "password_correct" not in st.session_state: st.markdown("\n\n") st.text_input("Enter the password", type="password", on_change=password_entered, key="password") st.divider() st.info("Developed by Milan Mrdenovic © IBM Norway 2024") return False elif not st.session_state["password_correct"]: st.markdown("\n\n") st.text_input("Enter the password", type="password", on_change=password_entered, key="password") st.divider() st.info("Developed by Milan Mrdenovic © IBM Norway 2024") st.error("😕 Password incorrect") return False else: return True if not check_password(): st.stop() # Initialize session state if 'current_page' not in st.session_state: st.session_state.current_page = 0 def initialize_session_state(): if 'chat_history' not in st.session_state: st.session_state.chat_history = [] def setup_client(): credentials = Credentials( url=st.secrets["url"], api_key=st.secrets["api_key"] ) return APIClient(credentials, project_id=st.secrets["project_id"]) def prepare_prompt(prompt, chat_history): if genparam.TYPE == "chat" and chat_history: chats = "\n".join([f"{message['role']}: \"{message['content']}\"" for message in chat_history]) return f"Conversation History:\n{chats}\n\nNew Message: {prompt}" return prompt def apply_prompt_syntax(prompt, system_prompt, prompt_template, bake_in_prompt_syntax): model_family_syntax = { "llama3-instruct (llama-3 & 3.1) - system": """\n<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""", "llama3-instruct (llama-3 & 3.1) - user": """\n<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n""", "granite-13b-chat & instruct - system": """\n<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>\n\n""", "granite-13b-chat & instruct - user": """\n<|user|>\n{prompt}\n<|assistant|>\n\n""", "llama2-chat - system": """\n[INST] <>\n{system_prompt}\n<>\n\n{prompt} [/INST] """, "llama2-chat - user": """\n[INST] {prompt} [/INST] """, "mistral & mixtral v2 tokenizer - system": """\n[INST] System Prompt:[{system_prompt}]\n\n{prompt} [/INST] """, "mistral & mixtral v2 tokenizer - user": """\n[INST] {prompt} [/INST] """ } if bake_in_prompt_syntax: template = model_family_syntax[prompt_template] if system_prompt: return template.format(system_prompt=system_prompt, prompt=prompt) return prompt def generate_response(watsonx_llm, prompt_data, params): generated_response = watsonx_llm.generate_text_stream(prompt=prompt_data, params=params) for chunk in generated_response: yield chunk def chat_interface(): st.subheader("Jimmy") # User input user_input = st.chat_input("You:", key="user_input") if user_input: # Add user message to chat history st.session_state.chat_history.append({"role": "user", "content": user_input}) # Prepare the prompt prompt = prepare_prompt(user_input, st.session_state.chat_history) # Apply prompt syntax prompt_data = apply_prompt_syntax( prompt, genparam.SYSTEM_PROMPT, genparam.PROMPT_TEMPLATE, genparam.BAKE_IN_PROMPT_SYNTAX ) # Setup client and model client = setup_client() watsonx_llm = ModelInference( api_client=client, model_id=genparam.SELECTED_MODEL, verify=genparam.VERIFY ) # Prepare parameters params = { GenParams.DECODING_METHOD: genparam.DECODING_METHOD, GenParams.MAX_NEW_TOKENS: genparam.MAX_NEW_TOKENS, GenParams.MIN_NEW_TOKENS: genparam.MIN_NEW_TOKENS, GenParams.REPETITION_PENALTY: genparam.REPETITION_PENALTY, GenParams.STOP_SEQUENCES: genparam.STOP_SEQUENCES } # Generate and stream response with st.chat_message("Jimmy", avatar="😒"): stream = generate_response(watsonx_llm, prompt_data, params) response = st.write_stream(stream) # Add AI response to chat history st.session_state.chat_history.append({"role": "Jimmy", "content": response}) def main(): initialize_session_state() chat_interface() if __name__ == "__main__": main()