import streamlit as st from transformers import pipeline import time @st.cache_resource def load_pipeline(model_name): with st.spinner(f"Loading model {model_name}..."): return pipeline("text-generation", model=model_name) MODEL = "teamapocalypseml/regben2ipa-byt5small" MAPPER = { "byt5 small regional transcriber": "teamapocalypseml/regben2ipa-byt5small", "umt5 base regional transcriber": "teamapocalypseml/regben2ipa-umt5base", "mt5 base regional transcriber": "teamapocalypseml/regben2ipa-mt5-base", } st.title("Model configurations") MODEL = st.selectbox("Select Model", [ "byt5 small regional transcriber", "umt5 base regional transcriber", "mt5 base regional transcriber" ]) st.link_button( f"{MAPPER[MODEL]}", f"https://huggingface.co/{MAPPER[MODEL]}", type="tertiary", icon="🔗" ) model = load_pipeline(MAPPER[MODEL]) model = pipeline("text2text-generation", model=MAPPER[MODEL]) prompt = st.text_input("Enter your regional bengali text:") district = st.selectbox("Select District", [ "Kishoreganj", "Narail", "Narsingdi", "Chittagong", "Rangpur", "Tangail" ]) if st.button("Generate Text"): if prompt != "" and district != "": ipa_transcription = model(f"<{district}> {prompt}", max_length=512)[0]["generated_text"] st.write(f"IPA Transcription:\n{ipa_transcription}")