import streamlit as st from moviepy.editor import VideoFileClip import time from transformers import pipeline from pytube import YouTube from pydub import AudioSegment from audio_extract import extract_audio import google.generativeai as google_genai import os from dotenv import load_dotenv load_dotenv() GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY") google_genai.configure(api_key=GOOGLE_API_KEY) st.set_page_config( page_title="VidText" ) def youtube_video_downloader(url): yt_vid = YouTube(url) title = yt_vid.title vid_dld = ( yt_vid.streams.filter(progressive=True, file_extension="mp4") .order_by("resolution") .desc() .first() ) vid_dld = vid_dld.download() return vid_dld, title def audio_extraction(video_file): # video_file_bytes = os.fsencode(video_file) # audio = extract_audio(input_path=video_file_bytes, output_path=f"{video_file}.mp3") audio = AudioSegment.from_file(video_file, 'mp4') audio_path = 'audio.wav' audio.export(audio_path, format="wav") return audio_path def audio_processing(mp3_audio): audio = AudioSegment.from_file(mp3_audio, format="mp3") wav_file = "audio_file.wav" audio = audio.export(wav_file, format="wav") return wav_file @st.cache_resource def load_asr_model(): asr_model = pipeline(task="automatic-speech-recognition", model="openai/whisper-large-v3") return asr_model transcriber_model = load_asr_model() def transcriber_pass(processed_audio): text_extract = transcriber_model(processed_audio) return text_extract['text'] def generate_ai_summary(transcript): model = google_genai.GenerativeModel('gemini-pro') model_response = model.generate_content([f"Give a summary of the text {transcript}"], stream=True) return model_response.text # Streamlit UI file_select_tab, audio_file_tab = st.tabs([ "Video file", "Audio file"]) # with youtube_url_tab: # url = st.text_input("Enter the Youtube url") # yt_video, title = youtube_video_downloader(url) # if url: # if st.button("Transcribe", key="yturl"): # with st.spinner("Transcribing..."): # audio = audio_extraction(yt_video, "mp3") # audio = audio_processing(audio) # ytvideo_transcript = transcriber_pass(audio) # st.success(f"Transcription successful") # st.write(ytvideo_transcript) # # st.write(f'Completed in {run_time}') # if st.button("Generate Summary"): # summary = generate_ai_summary(ytvideo_transcript) # st.write(summary) # Video file transcription with file_select_tab: uploaded_video_file = st.file_uploader("Upload video file", type="mp4") if uploaded_video_file: video_file = uploaded_video_file.read() if st.button("Transcribe", key="vidfile"): with st.spinner("Transcribing..."): audio = audio_extraction(video_file) # audio = audio_processing(audio) video_transcript = transcriber_pass(audio) st.success(f"Transcription successful") st.write(video_transcript) if st.button("Generate Summary", key="ti2"): summary = generate_ai_summary(video_transcript) st.write(summary) # Audio transcription with audio_file_tab: audio_file = st.file_uploader("Upload audio file", type="mp3") if audio_file: if st.button("Transcribe", key="audiofile"): with st.spinner("Transcribing..."): processed_audio = audio_processing(audio_file) audio_transcript = transcriber_pass(processed_audio) st.success(f"Transcription successful") st.write(audio_transcript) if st.button("Generate Summary", key="ti1"): summary = generate_ai_summary(audio_transcript) st.write(summary)