import gradio as gr import os os.system("pip install -q piper-tts==1.2.0") os.system("pip install -q -r requirements_xtts.txt") os.system("pip install -q TTS==0.21.1 --no-deps") import spaces import librosa from soni_translate.logging_setup import ( logger, set_logging_level, configure_logging_libs, ); configure_logging_libs() # noqa import whisperx import torch import os from soni_translate.audio_segments import create_translated_audio from soni_translate.text_to_speech import ( audio_segmentation_to_voice, edge_tts_voices_list, coqui_xtts_voices_list, piper_tts_voices_list, create_wav_file_vc, accelerate_segments, ) from soni_translate.translate_segments import ( translate_text, TRANSLATION_PROCESS_OPTIONS, DOCS_TRANSLATION_PROCESS_OPTIONS ) from soni_translate.preprocessor import ( audio_video_preprocessor, audio_preprocessor, ) from soni_translate.postprocessor import ( OUTPUT_TYPE_OPTIONS, DOCS_OUTPUT_TYPE_OPTIONS, sound_separate, get_no_ext_filename, media_out, get_subtitle_speaker, ) from soni_translate.language_configuration import ( LANGUAGES, UNIDIRECTIONAL_L_LIST, LANGUAGES_LIST, BARK_VOICES_LIST, VITS_VOICES_LIST, OPENAI_TTS_MODELS, ) from soni_translate.utils import ( remove_files, download_list, upload_model_list, download_manager, run_command, is_audio_file, is_subtitle_file, copy_files, get_valid_files, get_link_list, remove_directory_contents, ) from soni_translate.mdx_net import ( UVR_MODELS, MDX_DOWNLOAD_LINK, mdxnet_models_dir, ) from soni_translate.speech_segmentation import ( ASR_MODEL_OPTIONS, COMPUTE_TYPE_GPU, COMPUTE_TYPE_CPU, find_whisper_models, transcribe_speech, align_speech, diarize_speech, diarization_models, ) from soni_translate.text_multiformat_processor import ( BORDER_COLORS, srt_file_to_segments, document_preprocessor, determine_chunk_size, plain_text_to_segments, segments_to_plain_text, process_subtitles, linguistic_level_segments, break_aling_segments, doc_to_txtximg_pages, page_data_to_segments, update_page_data, fix_timestamps_docs, create_video_from_images, merge_video_and_audio, ) from soni_translate.languages_gui import language_data, news import copy import logging import json from pydub import AudioSegment from voice_main import ClassVoices import argparse import time import hashlib import sys IS_HUGGINGFACE_SPACE = os.environ.get('SPACE_ID') is not None FORCE_PUBLIC_SHARE = os.environ.get('FORCE_PUBLIC_SHARE', 'False').lower() == 'true' directories = [ "downloads", "logs", "weights", "clean_song_output", "_XTTS_", f"audio2{os.sep}audio", "audio", "outputs", ] [ os.makedirs(directory) for directory in directories if not os.path.exists(directory) ] class TTS_Info: def __init__(self, piper_enabled, xtts_enabled): self.list_edge = edge_tts_voices_list() self.list_bark = list(BARK_VOICES_LIST.keys()) self.list_vits = list(VITS_VOICES_LIST.keys()) self.list_openai_tts = OPENAI_TTS_MODELS self.piper_enabled = piper_enabled self.list_vits_onnx = ( piper_tts_voices_list() if self.piper_enabled else [] ) self.xtts_enabled = xtts_enabled def tts_list(self): self.list_coqui_xtts = ( coqui_xtts_voices_list() if self.xtts_enabled else [] ) list_tts = self.list_coqui_xtts + sorted( self.list_edge + (self.list_bark if os.environ.get("ZERO_GPU") != "TRUE" else []) + self.list_vits + self.list_openai_tts + self.list_vits_onnx ) return list_tts def prog_disp(msg, percent, is_gui, progress=None): logger.info(msg) if is_gui: progress(percent, desc=msg) def warn_disp(wrn_lang, is_gui): logger.warning(wrn_lang) if is_gui: gr.Warning(wrn_lang) class SoniTrCache: def __init__(self): self.cache = { 'media': [[]], 'refine_vocals': [], 'transcript_align': [], 'break_align': [], 'diarize': [], 'translate': [], 'subs_and_edit': [], 'tts': [], 'acc_and_vc': [], 'mix_aud': [], 'output': [] } self.cache_data = { 'media': [], 'refine_vocals': [], 'transcript_align': [], 'break_align': [], 'diarize': [], 'translate': [], 'subs_and_edit': [], 'tts': [], 'acc_and_vc': [], 'mix_aud': [], 'output': [] } self.cache_keys = list(self.cache.keys()) self.first_task = self.cache_keys[0] self.last_task = self.cache_keys[-1] self.pre_step = None self.pre_params = [] def set_variable(self, variable_name, value): setattr(self, variable_name, value) def task_in_cache(self, step: str, params: list, previous_step_data: dict): self.pre_step_cache = None if step == self.first_task: self.pre_step = None if self.pre_step: self.cache[self.pre_step] = self.pre_params # Fill data in cache self.cache_data[self.pre_step] = copy.deepcopy(previous_step_data) self.pre_params = params # logger.debug(f"Step: {str(step)}, Cache params: {str(self.cache)}") if params == self.cache[step]: logger.debug(f"In cache: {str(step)}") # Set the var needed for next step # Recovery from cache_data the current step for key, value in self.cache_data[step].items(): self.set_variable(key, copy.deepcopy(value)) logger.debug( f"Chache load: {str(key)}" ) self.pre_step = step return True else: logger.debug(f"Flush next and caching {str(step)}") selected_index = self.cache_keys.index(step) for idx, key in enumerate(self.cache.keys()): if idx >= selected_index: self.cache[key] = [] self.cache_data[key] = {} # The last is now previous self.pre_step = step return False def clear_cache(self, media, force=False): self.cache["media"] = ( self.cache["media"] if len(self.cache["media"]) else [[]] ) if media != self.cache["media"][0] or force: # Clear cache self.cache = {key: [] for key in self.cache} self.cache["media"] = [[]] logger.info("Cache flushed") def get_hash(filepath): with open(filepath, 'rb') as f: file_hash = hashlib.blake2b() while chunk := f.read(8192): file_hash.update(chunk) return file_hash.hexdigest()[:18] def check_openai_api_key(): if not os.environ.get("OPENAI_API_KEY"): raise ValueError( "To use GPT for translation, please set up your OpenAI API key " "as an environment variable in Linux as follows: " "export OPENAI_API_KEY='your-api-key-here'. Or change the " "translation process in Advanced settings." ) class SoniTranslate(SoniTrCache): def __init__(self, cpu_mode=False): super().__init__() if cpu_mode: os.environ["SONITR_DEVICE"] = "cpu" else: os.environ["SONITR_DEVICE"] = ( "cuda" if torch.cuda.is_available() else "cpu" ) self.device = os.environ.get("SONITR_DEVICE") self.device = self.device if os.environ.get("ZERO_GPU") != "TRUE" else "cuda" self.result_diarize = None self.align_language = None self.result_source_lang = None self.edit_subs_complete = False self.voiceless_id = None self.burn_subs_id = None self.vci = ClassVoices(only_cpu=cpu_mode) self.tts_voices = self.get_tts_voice_list() logger.info(f"Working in: {self.device}") def get_tts_voice_list(self): try: from piper import PiperVoice # noqa piper_enabled = True logger.info("PIPER TTS enabled") except Exception as error: logger.debug(str(error)) piper_enabled = False logger.info("PIPER TTS disabled") try: from TTS.api import TTS # noqa xtts_enabled = True logger.info("Coqui XTTS enabled") logger.info( "In this app, by using Coqui TTS (text-to-speech), you " "acknowledge and agree to the license.\n" "You confirm that you have read, understood, and agreed " "to the Terms and Conditions specified at the following " "link:\nhttps://coqui.ai/cpml.txt." ) os.environ["COQUI_TOS_AGREED"] = "1" except Exception as error: logger.debug(str(error)) xtts_enabled = False logger.info("Coqui XTTS disabled") self.tts_info = TTS_Info(piper_enabled, xtts_enabled) return self.tts_info.tts_list() def batch_multilingual_media_conversion(self, *kwargs): # logger.debug(str(kwargs)) media_file_arg = kwargs[0] if kwargs[0] is not None else [] link_media_arg = kwargs[1] link_media_arg = [x.strip() for x in link_media_arg.split(',')] link_media_arg = get_link_list(link_media_arg) path_arg = kwargs[2] path_arg = [x.strip() for x in path_arg.split(',')] path_arg = get_valid_files(path_arg) edit_text_arg = kwargs[31] get_text_arg = kwargs[32] video_acceleration_rate_regulation = kwargs[34] # Adjust the index as needed is_gui_arg = kwargs[-1] kwargs = kwargs[3:] media_batch = media_file_arg + link_media_arg + path_arg media_batch = list(filter(lambda x: x != "", media_batch)) media_batch = media_batch if media_batch else [None] logger.debug(str(media_batch)) remove_directory_contents("outputs") if edit_text_arg or get_text_arg: return self.multilingual_media_conversion( media_batch[0], "", "", *kwargs ) if video_acceleration_rate_regulation: logger.info("Video acceleration rate regulation is enabled.") try: self.accelerate_video_segments() logger.info("Video segments accelerated successfully.") except Exception as e: logger.error(f"Failed to accelerate video segments: {e}") raise if "SET_LIMIT" == os.getenv("DEMO") or "TRUE" == os.getenv("ZERO_GPU"): media_batch = [media_batch[0]] result = [] for media in media_batch: # Call the nested function with the parameters output_file = self.multilingual_media_conversion( media, "", "", *kwargs ) if isinstance(output_file, str): output_file = [output_file] result.extend(output_file) if is_gui_arg and len(media_batch) > 1: gr.Info(f"Done: {os.path.basename(output_file[0])}") return result def multilingual_media_conversion( self, media_file=None, link_media="", directory_input="", YOUR_HF_TOKEN="", preview=False, transcriber_model="large-v3", batch_size=4, compute_type="auto", origin_language="Automatic detection", target_language="English (en)", min_speakers=1, max_speakers=1, tts_voice00="en-US-EmmaMultilingualNeural-Female", tts_voice01="en-US-AndrewMultilingualNeural-Male", tts_voice02="en-US-AvaMultilingualNeural-Female", tts_voice03="en-US-BrianMultilingualNeural-Male", tts_voice04="de-DE-SeraphinaMultilingualNeural-Female", tts_voice05="de-DE-FlorianMultilingualNeural-Male", tts_voice06="fr-FR-VivienneMultilingualNeural-Female", tts_voice07="fr-FR-RemyMultilingualNeural-Male", tts_voice08="en-US-EmmaMultilingualNeural-Female", tts_voice09="en-US-AndrewMultilingualNeural-Male", tts_voice10="en-US-EmmaMultilingualNeural-Female", tts_voice11="en-US-AndrewMultilingualNeural-Male", video_output_name="", mix_method_audio="Adjusting volumes and mixing audio", max_accelerate_audio=2.1, acceleration_rate_regulation=False, volume_original_audio=0.25, volume_translated_audio=1.80, output_format_subtitle="srt", get_translated_text=False, get_video_from_text_json=False, text_json="{}", avoid_overlap=False, vocal_refinement=False, literalize_numbers=True, segment_duration_limit=15, diarization_model="pyannote_2.1", translate_process="google_translator_batch", subtitle_file=None, output_type="video (mp4)", voiceless_track=False, voice_imitation=False, voice_imitation_max_segments=3, voice_imitation_vocals_dereverb=False, voice_imitation_remove_previous=True, voice_imitation_method="freevc", dereverb_automatic_xtts=True, text_segmentation_scale="sentence", divide_text_segments_by="", soft_subtitles_to_video=True, burn_subtitles_to_video=False, enable_cache=True, custom_voices=False, custom_voices_workers=1, is_gui=False, progress=gr.Progress(), ): if not YOUR_HF_TOKEN: YOUR_HF_TOKEN = os.getenv("YOUR_HF_TOKEN") if diarization_model == "disable" or max_speakers == 1: if YOUR_HF_TOKEN is None: YOUR_HF_TOKEN = "" elif not YOUR_HF_TOKEN: raise ValueError("No valid Hugging Face token") else: os.environ["YOUR_HF_TOKEN"] = YOUR_HF_TOKEN if ( "gpt" in translate_process or transcriber_model == "OpenAI_API_Whisper" or "OpenAI-TTS" in tts_voice00 ): check_openai_api_key() if media_file is None: media_file = ( directory_input if os.path.exists(directory_input) else link_media ) media_file = ( media_file if isinstance(media_file, str) else media_file.name ) if is_subtitle_file(media_file): subtitle_file = media_file media_file = "" if media_file is None: media_file = "" if not origin_language: origin_language = "Automatic detection" if origin_language in UNIDIRECTIONAL_L_LIST and not subtitle_file: raise ValueError( f"The language '{origin_language}' " "is not supported for transcription (ASR)." ) if get_translated_text: self.edit_subs_complete = False if get_video_from_text_json: if not self.edit_subs_complete: raise ValueError("Generate the transcription first.") if ( ("sound" in output_type or output_type == "raw media") and (get_translated_text or get_video_from_text_json) ): raise ValueError( "Please disable 'edit generate subtitles' " f"first to acquire the {output_type}." ) TRANSLATE_AUDIO_TO = LANGUAGES[target_language] SOURCE_LANGUAGE = LANGUAGES[origin_language] if ( transcriber_model == "OpenAI_API_Whisper" and SOURCE_LANGUAGE == "zh-TW" ): logger.warning( "OpenAI API Whisper only supports Chinese (Simplified)." ) SOURCE_LANGUAGE = "zh" if ( text_segmentation_scale in ["word", "character"] and "subtitle" not in output_type ): wrn_lang = ( "Text segmentation by words or characters is typically" " used for generating subtitles. If subtitles are not the" " intended output, consider selecting 'sentence' " "segmentation method to ensure optimal results." ) warn_disp(wrn_lang, is_gui) if tts_voice00[:2].lower() != TRANSLATE_AUDIO_TO[:2].lower(): wrn_lang = ( "Make sure to select a 'TTS Speaker' suitable for" " the translation language to avoid errors with the TTS." ) warn_disp(wrn_lang, is_gui) if "_XTTS_" in tts_voice00 and voice_imitation: wrn_lang = ( "When you select XTTS, it is advisable " "to disable Voice Imitation." ) warn_disp(wrn_lang, is_gui) if custom_voices and voice_imitation: wrn_lang = ( "When you use R.V.C. models, it is advisable" " to disable Voice Imitation." ) warn_disp(wrn_lang, is_gui) if not media_file and not subtitle_file: raise ValueError( "Specifify a media or SRT file in advanced settings" ) if subtitle_file: subtitle_file = ( subtitle_file if isinstance(subtitle_file, str) else subtitle_file.name ) if subtitle_file and SOURCE_LANGUAGE == "Automatic detection": raise Exception( "To use an SRT file, you need to specify its " "original language (Source language)" ) if not media_file and subtitle_file: diarization_model = "disable" media_file = "audio_support.wav" if not get_video_from_text_json: remove_files(media_file) srt_data = srt_file_to_segments(subtitle_file) total_duration = srt_data["segments"][-1]["end"] + 30. support_audio = AudioSegment.silent( duration=int(total_duration * 1000) ) support_audio.export( media_file, format="wav" ) logger.info("Supporting audio for the SRT file, created.") if "SET_LIMIT" == os.getenv("DEMO"): preview = True mix_method_audio = "Adjusting volumes and mixing audio" transcriber_model = "medium" logger.info( "DEMO; set preview=True; Generation is limited to " "10 seconds to prevent CPU errors. No limitations with GPU.\n" "DEMO; set Adjusting volumes and mixing audio\n" "DEMO; set whisper model to medium" ) # Check GPU if self.device == "cpu" and compute_type not in COMPUTE_TYPE_CPU: logger.info("Compute type changed to float32") compute_type = "float32" base_video_file = "Video.mp4" base_audio_wav = "audio.wav" dub_audio_file = "audio_dub_solo.ogg" vocals_audio_file = "audio_Vocals_DeReverb.wav" voiceless_audio_file = "audio_Voiceless.wav" mix_audio_file = "audio_mix.mp3" vid_subs = "video_subs_file.mp4" video_output_file = "video_dub.mp4" if os.path.exists(media_file): media_base_hash = get_hash(media_file) else: media_base_hash = media_file self.clear_cache(media_base_hash, force=(not enable_cache)) if not get_video_from_text_json: self.result_diarize = ( self.align_language ) = self.result_source_lang = None if not self.task_in_cache("media", [media_base_hash, preview], {}): if is_audio_file(media_file): prog_disp( "Processing audio...", 0.15, is_gui, progress=progress ) audio_preprocessor(preview, media_file, base_audio_wav) else: prog_disp( "Processing video...", 0.15, is_gui, progress=progress ) audio_video_preprocessor( preview, media_file, base_video_file, base_audio_wav ) logger.debug("Set file complete.") if "sound" in output_type: prog_disp( "Separating sounds in the file...", 0.50, is_gui, progress=progress ) separate_out = sound_separate(base_audio_wav, output_type) final_outputs = [] for out in separate_out: final_name = media_out( media_file, f"{get_no_ext_filename(out)}", video_output_name, "wav", file_obj=out, ) final_outputs.append(final_name) logger.info(f"Done: {str(final_outputs)}") return final_outputs if output_type == "raw media": output = media_out( media_file, "raw_media", video_output_name, "wav" if is_audio_file(media_file) else "mp4", file_obj=base_audio_wav if is_audio_file(media_file) else base_video_file, ) logger.info(f"Done: {output}") return output if os.environ.get("IS_DEMO") == "TRUE": duration_verify = librosa.get_duration(filename=base_audio_wav) logger.info(f"Duration: {duration_verify} seconds") if duration_verify > 1500: raise RuntimeError( "The audio is too long to process in this demo. Alternatively, you" " can install the app locally or use the Colab notebook available " "in the ALEPH-WEBETA repository." ) elif duration_verify > 300: tts_voices_list = [ tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05, tts_voice06, tts_voice07, tts_voice08, tts_voice09, tts_voice10, tts_voice11 ] for tts_voice_ in tts_voices_list: if "_XTTS_" in tts_voice_: raise RuntimeError( "XTTS is too slow to be used for audio longer than 5 " "minutes in this demo. Alternatively, you can install " "the app locally or use the Colab notebook available in" " the aleph-webeta repository." ) if not self.task_in_cache("refine_vocals", [vocal_refinement], {}): self.vocals = None if vocal_refinement: try: from soni_translate.mdx_net import process_uvr_task _, _, _, _, file_vocals = process_uvr_task( orig_song_path=base_audio_wav, main_vocals=False, dereverb=True, remove_files_output_dir=True, ) remove_files(vocals_audio_file) copy_files(file_vocals, ".") self.vocals = vocals_audio_file except Exception as error: logger.error(str(error)) if not self.task_in_cache("transcript_align", [ subtitle_file, SOURCE_LANGUAGE, transcriber_model, compute_type, batch_size, literalize_numbers, segment_duration_limit, ( "l_unit" if text_segmentation_scale in ["word", "character"] and subtitle_file else "sentence" ) ], {"vocals": self.vocals}): if subtitle_file: prog_disp( "From SRT file...", 0.30, is_gui, progress=progress ) audio = whisperx.load_audio( base_audio_wav if not self.vocals else self.vocals ) self.result = srt_file_to_segments(subtitle_file) self.result["language"] = SOURCE_LANGUAGE else: prog_disp( "Transcribing...", 0.30, is_gui, progress=progress ) SOURCE_LANGUAGE = ( None if SOURCE_LANGUAGE == "Automatic detection" else SOURCE_LANGUAGE ) audio, self.result = transcribe_speech( base_audio_wav if not self.vocals else self.vocals, transcriber_model, compute_type, batch_size, SOURCE_LANGUAGE, literalize_numbers, segment_duration_limit, ) logger.debug( "Transcript complete, " f"segments count {len(self.result['segments'])}" ) self.align_language = self.result["language"] if ( not subtitle_file or text_segmentation_scale in ["word", "character"] ): prog_disp("Aligning...", 0.45, is_gui, progress=progress) try: if self.align_language in ["vi"]: logger.info( "Deficient alignment for the " f"{self.align_language} language, skipping the" " process. It is suggested to reduce the " "duration of the segments as an alternative." ) else: self.result = align_speech(audio, self.result) logger.debug( "Align complete, " f"segments count {len(self.result['segments'])}" ) except Exception as error: logger.error(str(error)) if self.result["segments"] == []: raise ValueError("No active speech found in audio") if not self.task_in_cache("break_align", [ divide_text_segments_by, text_segmentation_scale, self.align_language ], { "result": self.result, "align_language": self.align_language }): if self.align_language in ["ja", "zh", "zh-TW"]: divide_text_segments_by += "|!|?|...|。" if text_segmentation_scale in ["word", "character"]: self.result = linguistic_level_segments( self.result, text_segmentation_scale, ) elif divide_text_segments_by: try: self.result = break_aling_segments( self.result, break_characters=divide_text_segments_by, ) except Exception as error: logger.error(str(error)) if not self.task_in_cache("diarize", [ min_speakers, max_speakers, YOUR_HF_TOKEN[:len(YOUR_HF_TOKEN)//2], diarization_model ], { "result": self.result }): prog_disp("Diarizing...", 0.60, is_gui, progress=progress) diarize_model_select = diarization_models[diarization_model] self.result_diarize = diarize_speech( base_audio_wav if not self.vocals else self.vocals, self.result, min_speakers, max_speakers, YOUR_HF_TOKEN, diarize_model_select, ) logger.debug("Diarize complete") self.result_source_lang = copy.deepcopy(self.result_diarize) if not self.task_in_cache("translate", [ TRANSLATE_AUDIO_TO, translate_process ], { "result_diarize": self.result_diarize }): prog_disp("Translating...", 0.70, is_gui, progress=progress) lang_source = ( self.align_language if self.align_language else SOURCE_LANGUAGE ) self.result_diarize["segments"] = translate_text( self.result_diarize["segments"], TRANSLATE_AUDIO_TO, translate_process, chunk_size=1800, source=lang_source, ) logger.debug("Translation complete") logger.debug(self.result_diarize) if get_translated_text: json_data = [] for segment in self.result_diarize["segments"]: start = segment["start"] text = segment["text"] speaker = int(segment.get("speaker", "SPEAKER_00")[-2:]) + 1 json_data.append( {"start": start, "text": text, "speaker": speaker} ) # Convert list of dictionaries to a JSON string with indentation json_string = json.dumps(json_data, indent=2) logger.info("Done") self.edit_subs_complete = True return json_string.encode().decode("unicode_escape") if get_video_from_text_json: if self.result_diarize is None: raise ValueError("Generate the transcription first.") # with open('text_json.json', 'r') as file: text_json_loaded = json.loads(text_json) for i, segment in enumerate(self.result_diarize["segments"]): segment["text"] = text_json_loaded[i]["text"] segment["speaker"] = "SPEAKER_{:02d}".format( int(text_json_loaded[i]["speaker"]) - 1 ) # Write subtitle if not self.task_in_cache("subs_and_edit", [ copy.deepcopy(self.result_diarize), output_format_subtitle, TRANSLATE_AUDIO_TO ], { "result_diarize": self.result_diarize }): if output_format_subtitle == "disable": self.sub_file = "sub_tra.srt" elif output_format_subtitle != "ass": self.sub_file = process_subtitles( self.result_source_lang, self.align_language, self.result_diarize, output_format_subtitle, TRANSLATE_AUDIO_TO, ) # Need task if output_format_subtitle != "srt": _ = process_subtitles( self.result_source_lang, self.align_language, self.result_diarize, "srt", TRANSLATE_AUDIO_TO, ) if output_format_subtitle == "ass": convert_ori = "ffmpeg -i sub_ori.srt sub_ori.ass -y" convert_tra = "ffmpeg -i sub_tra.srt sub_tra.ass -y" self.sub_file = "sub_tra.ass" run_command(convert_ori) run_command(convert_tra) format_sub = ( output_format_subtitle if output_format_subtitle != "disable" else "srt" ) if output_type == "subtitle": out_subs = [] tra_subs = media_out( media_file, TRANSLATE_AUDIO_TO, video_output_name, format_sub, file_obj=self.sub_file, ) out_subs.append(tra_subs) ori_subs = media_out( media_file, self.align_language, video_output_name, format_sub, file_obj=f"sub_ori.{format_sub}", ) out_subs.append(ori_subs) logger.info(f"Done: {out_subs}") return out_subs if output_type == "subtitle [by speaker]": output = get_subtitle_speaker( media_file, result=self.result_diarize, language=TRANSLATE_AUDIO_TO, extension=format_sub, base_name=video_output_name, ) logger.info(f"Done: {str(output)}") return output if "video [subtitled]" in output_type: output = media_out( media_file, TRANSLATE_AUDIO_TO + "_subtitled", video_output_name, "wav" if is_audio_file(media_file) else ( "mkv" if "mkv" in output_type else "mp4" ), file_obj=base_audio_wav if is_audio_file(media_file) else base_video_file, soft_subtitles=False if is_audio_file(media_file) else True, subtitle_files=output_format_subtitle, ) msg_out = output[0] if isinstance(output, list) else output logger.info(f"Done: {msg_out}") return output if not self.task_in_cache("tts", [ TRANSLATE_AUDIO_TO, tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05, tts_voice06, tts_voice07, tts_voice08, tts_voice09, tts_voice10, tts_voice11, dereverb_automatic_xtts ], { "sub_file": self.sub_file }): prog_disp("Text to speech...", 0.80, is_gui, progress=progress) self.valid_speakers = audio_segmentation_to_voice( self.result_diarize, TRANSLATE_AUDIO_TO, is_gui, tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05, tts_voice06, tts_voice07, tts_voice08, tts_voice09, tts_voice10, tts_voice11, dereverb_automatic_xtts, ) if not self.task_in_cache("acc_and_vc", [ max_accelerate_audio, acceleration_rate_regulation, voice_imitation, voice_imitation_max_segments, voice_imitation_remove_previous, voice_imitation_vocals_dereverb, voice_imitation_method, custom_voices, custom_voices_workers, copy.deepcopy(self.vci.model_config), avoid_overlap ], { "valid_speakers": self.valid_speakers }): audio_files, speakers_list = accelerate_segments( self.result_diarize, max_accelerate_audio, self.valid_speakers, acceleration_rate_regulation, ) # Voice Imitation (Tone color converter) if voice_imitation: prog_disp( "Voice Imitation...", 0.85, is_gui, progress=progress ) from soni_translate.text_to_speech import toneconverter try: toneconverter( copy.deepcopy(self.result_diarize), voice_imitation_max_segments, voice_imitation_remove_previous, voice_imitation_vocals_dereverb, voice_imitation_method, ) except Exception as error: logger.error(str(error)) # custom voice if custom_voices: prog_disp( "Applying customized voices...", 0.90, is_gui, progress=progress, ) try: self.vci( audio_files, speakers_list, overwrite=True, parallel_workers=custom_voices_workers, ) self.vci.unload_models() except Exception as error: logger.error(str(error)) prog_disp( "Creating final translated video...", 0.95, is_gui, progress=progress, ) remove_files(dub_audio_file) create_translated_audio( self.result_diarize, audio_files, dub_audio_file, False, avoid_overlap, ) # Voiceless track, change with file hash_base_audio_wav = get_hash(base_audio_wav) if voiceless_track: if self.voiceless_id != hash_base_audio_wav: from soni_translate.mdx_net import process_uvr_task try: # voiceless_audio_file_dir = "clean_song_output/voiceless" remove_files(voiceless_audio_file) uvr_voiceless_audio_wav, _ = process_uvr_task( orig_song_path=base_audio_wav, song_id="voiceless", only_voiceless=True, remove_files_output_dir=False, ) copy_files(uvr_voiceless_audio_wav, ".") base_audio_wav = voiceless_audio_file self.voiceless_id = hash_base_audio_wav except Exception as error: logger.error(str(error)) else: base_audio_wav = voiceless_audio_file if not self.task_in_cache("mix_aud", [ mix_method_audio, volume_original_audio, volume_translated_audio, voiceless_track ], {}): # TYPE MIX AUDIO remove_files(mix_audio_file) command_volume_mix = f'ffmpeg -y -i {base_audio_wav} -i {dub_audio_file} -filter_complex "[0:0]volume={volume_original_audio}[a];[1:0]volume={volume_translated_audio}[b];[a][b]amix=inputs=2:duration=longest" -c:a libmp3lame {mix_audio_file}' command_background_mix = f'ffmpeg -i {base_audio_wav} -i {dub_audio_file} -filter_complex "[1:a]asplit=2[sc][mix];[0:a][sc]sidechaincompress=threshold=0.003:ratio=20[bg]; [bg][mix]amerge[final]" -map [final] {mix_audio_file}' if mix_method_audio == "Adjusting volumes and mixing audio": # volume mix run_command(command_volume_mix) else: try: # background mix run_command(command_background_mix) except Exception as error_mix: # volume mix except logger.error(str(error_mix)) run_command(command_volume_mix) if "audio" in output_type or is_audio_file(media_file): output = media_out( media_file, TRANSLATE_AUDIO_TO, video_output_name, "wav" if "wav" in output_type else ( "ogg" if "ogg" in output_type else "mp3" ), file_obj=mix_audio_file, subtitle_files=output_format_subtitle, ) msg_out = output[0] if isinstance(output, list) else output logger.info(f"Done: {msg_out}") return output hash_base_video_file = get_hash(base_video_file) if burn_subtitles_to_video: hashvideo_text = [ hash_base_video_file, [seg["text"] for seg in self.result_diarize["segments"]] ] if self.burn_subs_id != hashvideo_text: try: logger.info("Burn subtitles") remove_files(vid_subs) command = f"ffmpeg -i {base_video_file} -y -vf subtitles=sub_tra.srt -max_muxing_queue_size 9999 {vid_subs}" run_command(command) base_video_file = vid_subs self.burn_subs_id = hashvideo_text except Exception as error: logger.error(str(error)) else: base_video_file = vid_subs if not self.task_in_cache("output", [ hash_base_video_file, hash_base_audio_wav, burn_subtitles_to_video ], {}): # Merge new audio + video remove_files(video_output_file) run_command( f"ffmpeg -i {base_video_file} -i {mix_audio_file} -c:v copy -c:a copy -map 0:v -map 1:a -shortest {video_output_file}" ) output = media_out( media_file, TRANSLATE_AUDIO_TO, video_output_name, "mkv" if "mkv" in output_type else "mp4", file_obj=video_output_file, soft_subtitles=soft_subtitles_to_video, subtitle_files=output_format_subtitle, ) msg_out = output[0] if isinstance(output, list) else output logger.info(f"Done: {msg_out}") return output def hook_beta_processor( self, document, tgt_lang, translate_process, ori_lang, tts, name_final_file, custom_voices, custom_voices_workers, output_type, chunk_size, width, height, start_page, end_page, bcolor, is_gui, progress ): prog_disp("Processing pages...", 0.10, is_gui, progress=progress) doc_data = doc_to_txtximg_pages(document, width, height, start_page, end_page, bcolor) result_diarize = page_data_to_segments(doc_data, 1700) prog_disp("Translating...", 0.20, is_gui, progress=progress) result_diarize["segments"] = translate_text( result_diarize["segments"], tgt_lang, translate_process, chunk_size=0, source=ori_lang, ) chunk_size = ( chunk_size if chunk_size else determine_chunk_size(tts) ) doc_data = update_page_data(result_diarize, doc_data) prog_disp("Text to speech...", 0.30, is_gui, progress=progress) result_diarize = page_data_to_segments(doc_data, chunk_size) valid_speakers = audio_segmentation_to_voice( result_diarize, tgt_lang, is_gui, tts, ) # fix format and set folder output audio_files, speakers_list = accelerate_segments( result_diarize, 1.0, valid_speakers, ) # custom voice if custom_voices: prog_disp( "Applying customized voices...", 0.60, is_gui, progress=progress, ) self.vci( audio_files, speakers_list, overwrite=True, parallel_workers=custom_voices_workers, ) self.vci.unload_models() # Update time segments and not concat result_diarize = fix_timestamps_docs(result_diarize, audio_files) final_wav_file = "audio_book.wav" remove_files(final_wav_file) prog_disp("Creating audio file...", 0.70, is_gui, progress=progress) create_translated_audio( result_diarize, audio_files, final_wav_file, False ) prog_disp("Creating video file...", 0.80, is_gui, progress=progress) video_doc = create_video_from_images( doc_data, result_diarize ) # Merge video and audio prog_disp("Merging...", 0.90, is_gui, progress=progress) vid_out = merge_video_and_audio(video_doc, final_wav_file) # End output = media_out( document, tgt_lang, name_final_file, "mkv" if "mkv" in output_type else "mp4", file_obj=vid_out, ) logger.info(f"Done: {output}") return output def multilingual_docs_conversion( self, string_text="", # string document=None, # doc path gui directory_input="", # doc path origin_language="English (en)", target_language="English (en)", tts_voice00="en-US-EmmaMultilingualNeural-Female", name_final_file="", translate_process="google_translator", output_type="audio", chunk_size=None, custom_voices=False, custom_voices_workers=1, start_page=1, end_page=99999, width=1280, height=720, bcolor="dynamic", is_gui=False, progress=gr.Progress(), ): if "gpt" in translate_process: check_openai_api_key() SOURCE_LANGUAGE = LANGUAGES[origin_language] if translate_process != "disable_translation": TRANSLATE_AUDIO_TO = LANGUAGES[target_language] else: TRANSLATE_AUDIO_TO = SOURCE_LANGUAGE logger.info("No translation") if tts_voice00[:2].lower() != TRANSLATE_AUDIO_TO[:2].lower(): logger.debug( "Make sure to select a 'TTS Speaker' suitable for the " "translation language to avoid errors with the TTS." ) self.clear_cache(string_text, force=True) is_string = False if document is None: if os.path.exists(directory_input): document = directory_input else: document = string_text is_string = True document = document if isinstance(document, str) else document.name if not document: raise Exception("No data found") if os.environ.get("IS_DEMO") == "TRUE" and not is_string: raise RuntimeError( "This option is disabled in this demo. " "Alternatively, you can install " "the app locally or use the Colab notebook available in" " the ALEPH-WEBETA repository." ) if "videobook" in output_type: if not document.lower().endswith(".pdf"): raise ValueError( "Videobooks are only compatible with PDF files." ) return self.hook_beta_processor( document, TRANSLATE_AUDIO_TO, translate_process, SOURCE_LANGUAGE, tts_voice00, name_final_file, custom_voices, custom_voices_workers, output_type, chunk_size, width, height, start_page, end_page, bcolor, is_gui, progress ) # audio_wav = "audio.wav" final_wav_file = "audio_book.wav" prog_disp("Processing text...", 0.15, is_gui, progress=progress) result_file_path, result_text = document_preprocessor( document, is_string, start_page, end_page ) if ( output_type == "book (txt)" and translate_process == "disable_translation" ): return result_file_path if "SET_LIMIT" == os.getenv("DEMO"): result_text = result_text[:50] logger.info( "DEMO; Generation is limited to 50 characters to prevent " "CPU errors. No limitations with GPU.\n" ) if translate_process != "disable_translation": # chunks text for translation result_diarize = plain_text_to_segments(result_text, 1700) prog_disp("Translating...", 0.30, is_gui, progress=progress) # not or iterative with 1700 chars result_diarize["segments"] = translate_text( result_diarize["segments"], TRANSLATE_AUDIO_TO, translate_process, chunk_size=0, source=SOURCE_LANGUAGE, ) txt_file_path, result_text = segments_to_plain_text(result_diarize) if output_type == "book (txt)": return media_out( result_file_path if is_string else document, TRANSLATE_AUDIO_TO, name_final_file, "txt", file_obj=txt_file_path, ) # (TTS limits) plain text to result_diarize chunk_size = ( chunk_size if chunk_size else determine_chunk_size(tts_voice00) ) result_diarize = plain_text_to_segments(result_text, chunk_size) logger.debug(result_diarize) prog_disp("Text to speech...", 0.45, is_gui, progress=progress) valid_speakers = audio_segmentation_to_voice( result_diarize, TRANSLATE_AUDIO_TO, is_gui, tts_voice00, ) # fix format and set folder output audio_files, speakers_list = accelerate_segments( result_diarize, 1.0, valid_speakers, ) # custom voice if custom_voices: prog_disp( "Applying customized voices...", 0.80, is_gui, progress=progress, ) self.vci( audio_files, speakers_list, overwrite=True, parallel_workers=custom_voices_workers, ) self.vci.unload_models() prog_disp( "Creating final audio file...", 0.90, is_gui, progress=progress ) remove_files(final_wav_file) create_translated_audio( result_diarize, audio_files, final_wav_file, True ) output = media_out( result_file_path if is_string else document, TRANSLATE_AUDIO_TO, name_final_file, "mp3" if "mp3" in output_type else ( "ogg" if "ogg" in output_type else "wav" ), file_obj=final_wav_file, ) logger.info(f"Done: {output}") return output title = "
📽️ ALEPH-WEO-WEBETA 🈷️
" def create_gui(theme, logs_in_gui=False): with gr.Blocks(theme=theme) as app: gr.Markdown(title) gr.Markdown(lg_conf["description"]) if os.environ.get("ZERO_GPU") == "TRUE": gr.Markdown( """
⚠️ Important ⚠️
""" ) with gr.Tab(lg_conf["tab_translate"]): with gr.Row(): with gr.Column(): input_data_type = gr.Dropdown( ["SUBMIT VIDEO", "URL", "Find Video Path"], value="SUBMIT VIDEO", label=lg_conf["video_source"], ) def swap_visibility(data_type): if data_type == "URL": return ( gr.update(visible=False, value=None), gr.update(visible=True, value=""), gr.update(visible=False, value=""), ) elif data_type == "SUBMIT VIDEO": return ( gr.update(visible=True, value=None), gr.update(visible=False, value=""), gr.update(visible=False, value=""), ) elif data_type == "Find Video Path": return ( gr.update(visible=False, value=None), gr.update(visible=False, value=""), gr.update(visible=True, value=""), ) video_input = gr.File( label="VIDEO", file_count="multiple", type="filepath", ) blink_input = gr.Textbox( visible=False, label=lg_conf["link_label"], info=lg_conf["link_info"], placeholder=lg_conf["link_ph"], ) directory_input = gr.Textbox( visible=False, label=lg_conf["dir_label"], info=lg_conf["dir_info"], placeholder=lg_conf["dir_ph"], ) input_data_type.change( fn=swap_visibility, inputs=input_data_type, outputs=[video_input, blink_input, directory_input], ) gr.HTML() SOURCE_LANGUAGE = gr.Dropdown( LANGUAGES_LIST, value=LANGUAGES_LIST[0], label=lg_conf["sl_label"], info=lg_conf["sl_info"], ) TRANSLATE_AUDIO_TO = gr.Dropdown( LANGUAGES_LIST[1:], value="English (en)", label=lg_conf["tat_label"], info=lg_conf["tat_info"], ) gr.HTML("
") gr.Markdown(lg_conf["num_speakers"]) MAX_TTS = 12 min_speakers = gr.Slider( 1, MAX_TTS, value=1, label=lg_conf["min_sk"], step=1, visible=False, ) max_speakers = gr.Slider( 1, MAX_TTS, value=2, step=1, label=lg_conf["max_sk"], ) gr.Markdown(lg_conf["tts_select"]) def submit(value): visibility_dict = { f"tts_voice{i:02d}": gr.update(visible=i < value) for i in range(MAX_TTS) } return [value for value in visibility_dict.values()] tts_voice00 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="en-US-EmmaMultilingualNeural-Female", label=lg_conf["sk1"], visible=True, interactive=True, ) tts_voice01 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="en-US-AndrewMultilingualNeural-Male", label=lg_conf["sk2"], visible=True, interactive=True, ) tts_voice02 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="en-US-AvaMultilingualNeural-Female", label=lg_conf["sk3"], visible=False, interactive=True, ) tts_voice03 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="en-US-BrianMultilingualNeural-Male", label=lg_conf["sk4"], visible=False, interactive=True, ) tts_voice04 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="de-DE-SeraphinaMultilingualNeural-Female", label=lg_conf["sk4"], visible=False, interactive=True, ) tts_voice05 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="de-DE-FlorianMultilingualNeural-Male", label=lg_conf["sk6"], visible=False, interactive=True, ) tts_voice06 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="fr-FR-VivienneMultilingualNeural-Female", label=lg_conf["sk7"], visible=False, interactive=True, ) tts_voice07 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="fr-FR-RemyMultilingualNeural-Male", label=lg_conf["sk8"], visible=False, interactive=True, ) tts_voice08 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="en-US-EmmaMultilingualNeural-Female", label=lg_conf["sk9"], visible=False, interactive=True, ) tts_voice09 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="en-US-AndrewMultilingualNeural-Male", label=lg_conf["sk10"], visible=False, interactive=True, ) tts_voice10 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="en-US-EmmaMultilingualNeural-Female", label=lg_conf["sk11"], visible=False, interactive=True, ) tts_voice11 = gr.Dropdown( SoniTr.tts_info.tts_list(), value="en-US-AndrewMultilingualNeural-Male", label=lg_conf["sk12"], visible=False, interactive=True, ) max_speakers.change( submit, max_speakers, [ tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05, tts_voice06, tts_voice07, tts_voice08, tts_voice09, tts_voice10, tts_voice11, ], ) with gr.Column(): with gr.Accordion( lg_conf["vc_title"], open=False, ): gr.Markdown(lg_conf["vc_subtitle"]) voice_imitation_gui = gr.Checkbox( False, label=lg_conf["vc_active_label"], info=lg_conf["vc_active_info"], ) openvoice_models = ["openvoice", "openvoice_v2"] voice_imitation_method_options = ( ["freevc"] + openvoice_models if SoniTr.tts_info.xtts_enabled else openvoice_models ) voice_imitation_method_gui = gr.Dropdown( voice_imitation_method_options, value=voice_imitation_method_options[-1], label=lg_conf["vc_method_label"], info=lg_conf["vc_method_info"], ) voice_imitation_max_segments_gui = gr.Slider( label=lg_conf["vc_segments_label"], info=lg_conf["vc_segments_info"], value=3, step=1, minimum=1, maximum=10, visible=True, interactive=True, ) voice_imitation_vocals_dereverb_gui = gr.Checkbox( False, label=lg_conf["vc_dereverb_label"], info=lg_conf["vc_dereverb_info"], ) voice_imitation_remove_previous_gui = gr.Checkbox( True, label=lg_conf["vc_remove_label"], info=lg_conf["vc_remove_info"], ) if SoniTr.tts_info.xtts_enabled: with gr.Column(): with gr.Accordion( lg_conf["xtts_title"], open=False, ): gr.Markdown(lg_conf["xtts_subtitle"]) wav_speaker_file = gr.File( label=lg_conf["xtts_file_label"] ) wav_speaker_name = gr.Textbox( label=lg_conf["xtts_name_label"], value="", info=lg_conf["xtts_name_info"], placeholder="default_name", lines=1, ) wav_speaker_start = gr.Number( label="Time audio start", value=0, visible=False, ) wav_speaker_end = gr.Number( label="Time audio end", value=0, visible=False, ) wav_speaker_dir = gr.Textbox( label="Directory save", value="_XTTS_", visible=False, ) wav_speaker_dereverb = gr.Checkbox( True, label=lg_conf["xtts_dereverb_label"], info=lg_conf["xtts_dereverb_info"] ) wav_speaker_output = gr.HTML() create_xtts_wav = gr.Button( lg_conf["xtts_button"] ) gr.Markdown(lg_conf["xtts_footer"]) else: wav_speaker_dereverb = gr.Checkbox( False, label=lg_conf["xtts_dereverb_label"], info=lg_conf["xtts_dereverb_info"], visible=False ) with gr.Column(): with gr.Accordion( lg_conf["extra_setting"], open=False ): # Add the new video acceleration rate regulation option video_acceleration_rate_regulation_gui = gr.Checkbox( False, label="Video Acceleration Rate Regulation", info="Enable this option to regulate the video segments rate to match the translated audio segments length and regulate overall video length.", ) audio_accelerate = gr.Slider( label=lg_conf["acc_max_label"], value=1.9, step=0.1, minimum=1.0, maximum=2.5, visible=True, interactive=True, info=lg_conf["acc_max_info"], ) acceleration_rate_regulation_gui = gr.Checkbox( False, label=lg_conf["acc_rate_label"], info=lg_conf["acc_rate_info"], ) avoid_overlap_gui = gr.Checkbox( False, label=lg_conf["or_label"], info=lg_conf["or_info"], ) gr.HTML("
") audio_mix_options = [ "Mixing audio with sidechain compression", "Adjusting volumes and mixing audio", ] AUDIO_MIX = gr.Dropdown( audio_mix_options, value=audio_mix_options[1], label=lg_conf["aud_mix_label"], info=lg_conf["aud_mix_info"], ) volume_original_mix = gr.Slider( label=lg_conf["vol_ori"], info="for Adjusting volumes and mixing audio", value=0.25, step=0.05, minimum=0.0, maximum=2.50, visible=True, interactive=True, ) volume_translated_mix = gr.Slider( label=lg_conf["vol_tra"], info="for Adjusting volumes and mixing audio", value=1.80, step=0.05, minimum=0.0, maximum=2.50, visible=True, interactive=True, ) main_voiceless_track = gr.Checkbox( label=lg_conf["voiceless_tk_label"], info=lg_conf["voiceless_tk_info"], ) gr.HTML("
") sub_type_options = [ "disable", "srt", "vtt", "ass", "txt", "tsv", "json", "aud", ] sub_type_output = gr.Dropdown( sub_type_options, value=sub_type_options[1], label=lg_conf["sub_type"], ) soft_subtitles_to_video_gui = gr.Checkbox( label=lg_conf["soft_subs_label"], info=lg_conf["soft_subs_info"], ) burn_subtitles_to_video_gui = gr.Checkbox( label=lg_conf["burn_subs_label"], info=lg_conf["burn_subs_info"], ) gr.HTML("
") gr.Markdown(lg_conf["whisper_title"]) literalize_numbers_gui = gr.Checkbox( True, label=lg_conf["lnum_label"], info=lg_conf["lnum_info"], ) vocal_refinement_gui = gr.Checkbox( False, label=lg_conf["scle_label"], info=lg_conf["scle_info"], ) segment_duration_limit_gui = gr.Slider( label=lg_conf["sd_limit_label"], info=lg_conf["sd_limit_info"], value=15, step=1, minimum=1, maximum=30, ) whisper_model_default = ( "large-v3" if SoniTr.device == "cuda" else "medium" ) WHISPER_MODEL_SIZE = gr.Dropdown( ASR_MODEL_OPTIONS + find_whisper_models(), value=whisper_model_default, label="Whisper ASR model", info=lg_conf["asr_model_info"], allow_custom_value=True, ) com_t_opt, com_t_default = ( [COMPUTE_TYPE_GPU, "float16"] if SoniTr.device == "cuda" else [COMPUTE_TYPE_CPU, "float32"] ) compute_type = gr.Dropdown( com_t_opt, value=com_t_default, label=lg_conf["ctype_label"], info=lg_conf["ctype_info"], ) batch_size_value = 8 if os.environ.get("ZERO_GPU") != "TRUE" else 32 batch_size = gr.Slider( minimum=1, maximum=32, value=batch_size_value, label=lg_conf["batchz_label"], info=lg_conf["batchz_info"], step=1, ) input_srt = gr.File( label=lg_conf["srt_file_label"], file_types=[".srt", ".ass", ".vtt"], height=130, ) gr.HTML("
") text_segmentation_options = [ "sentence", "word", "character" ] text_segmentation_scale_gui = gr.Dropdown( text_segmentation_options, value=text_segmentation_options[0], label=lg_conf["tsscale_label"], info=lg_conf["tsscale_info"], ) divide_text_segments_by_gui = gr.Textbox( label=lg_conf["divide_text_label"], value="", info=lg_conf["divide_text_info"], ) gr.HTML("
") pyannote_models_list = list( diarization_models.keys() ) diarization_process_dropdown = gr.Dropdown( pyannote_models_list, value=pyannote_models_list[1], label=lg_conf["diarization_label"], ) translate_process_dropdown = gr.Dropdown( TRANSLATION_PROCESS_OPTIONS, value=TRANSLATION_PROCESS_OPTIONS[0], label=lg_conf["tr_process_label"], ) gr.HTML("
") main_output_type = gr.Dropdown( OUTPUT_TYPE_OPTIONS, value=OUTPUT_TYPE_OPTIONS[0], label=lg_conf["out_type_label"], ) VIDEO_OUTPUT_NAME = gr.Textbox( label=lg_conf["out_name_label"], value="", info=lg_conf["out_name_info"], ) play_sound_gui = gr.Checkbox( True, label=lg_conf["task_sound_label"], info=lg_conf["task_sound_info"], ) enable_cache_gui = gr.Checkbox( True, label=lg_conf["cache_label"], info=lg_conf["cache_info"], ) PREVIEW = gr.Checkbox( label="Preview", info=lg_conf["preview_info"] ) is_gui_dummy_check = gr.Checkbox( True, visible=False ) with gr.Column(variant="compact"): edit_sub_check = gr.Checkbox( label=lg_conf["edit_sub_label"], info=lg_conf["edit_sub_info"], interactive=True, # Always enable the checkbox ) dummy_false_check = gr.Checkbox( False, visible=False, ) def visible_component_subs(input_bool): if input_bool: return gr.update(visible=True), gr.update( visible=True ) else: return gr.update(visible=False), gr.update( visible=False ) subs_button = gr.Button( lg_conf["button_subs"], variant="primary", visible=False, ) subs_edit_space = gr.Textbox( visible=False, lines=10, label=lg_conf["editor_sub_label"], info=lg_conf["editor_sub_info"], placeholder=lg_conf["editor_sub_ph"], ) edit_sub_check.change( visible_component_subs, [edit_sub_check], [subs_button, subs_edit_space], ) with gr.Row(): video_button = gr.Button( lg_conf["button_translate"], variant="primary", ) with gr.Row(): video_output = gr.File( label=lg_conf["output_result_label"], file_count="multiple", interactive=False, ) # gr.Video() gr.HTML("
") if ( os.getenv("YOUR_HF_TOKEN") is None or os.getenv("YOUR_HF_TOKEN") == "" ): HFKEY = gr.Textbox( visible=True, label="HF Token", info=lg_conf["ht_token_info"], placeholder=lg_conf["ht_token_ph"], ) else: HFKEY = gr.Textbox( visible=False, label="HF Token", info=lg_conf["ht_token_info"], placeholder=lg_conf["ht_token_ph"], ) gr.Examples( examples=[ [ ["./assets/Video_main.mp4"], "", "", "", False, whisper_model_default, batch_size_value, com_t_default, "Spanish (es)", "English (en)", 1, 2, "en-US-EmmaMultilingualNeural-Female", "en-US-AndrewMultilingualNeural-Male", ], ], # no update fn=SoniTr.batch_multilingual_media_conversion, inputs=[ video_input, blink_input, directory_input, HFKEY, PREVIEW, WHISPER_MODEL_SIZE, batch_size, compute_type, SOURCE_LANGUAGE, TRANSLATE_AUDIO_TO, min_speakers, max_speakers, tts_voice00, tts_voice01, ], outputs=[video_output], cache_examples=False, ) with gr.Tab(lg_conf["tab_docs"]): with gr.Column(): with gr.Accordion("Docs", open=True): with gr.Column(variant="compact"): with gr.Column(): input_doc_type = gr.Dropdown( [ "WRITE TEXT", "SUBMIT DOCUMENT", "Find Document Path", ], value="SUBMIT DOCUMENT", label=lg_conf["docs_input_label"], info=lg_conf["docs_input_info"], ) def swap_visibility(data_type): if data_type == "WRITE TEXT": return ( gr.update(visible=True, value=""), gr.update(visible=False, value=None), gr.update(visible=False, value=""), ) elif data_type == "SUBMIT DOCUMENT": return ( gr.update(visible=False, value=""), gr.update(visible=True, value=None), gr.update(visible=False, value=""), ) elif data_type == "Find Document Path": return ( gr.update(visible=False, value=""), gr.update(visible=False, value=None), gr.update(visible=True, value=""), ) text_docs = gr.Textbox( label="Text", value="This is an example", info="Write a text", placeholder="...", lines=5, visible=False, ) input_docs = gr.File( label="Document", visible=True ) directory_input_docs = gr.Textbox( visible=False, label="Document Path", info="Example: /home/my_doc.pdf", placeholder="Path goes here...", ) input_doc_type.change( fn=swap_visibility, inputs=input_doc_type, outputs=[ text_docs, input_docs, directory_input_docs, ], ) gr.HTML() tts_documents = gr.Dropdown( list( filter( lambda x: x != "_XTTS_/AUTOMATIC.wav", SoniTr.tts_info.tts_list(), ) ), value="en-US-EmmaMultilingualNeural-Female", label="TTS", visible=True, interactive=True, ) gr.HTML() docs_SOURCE_LANGUAGE = gr.Dropdown( LANGUAGES_LIST[1:], value="English (en)", label=lg_conf["sl_label"], info=lg_conf["docs_source_info"], ) docs_TRANSLATE_TO = gr.Dropdown( LANGUAGES_LIST[1:], value="English (en)", label=lg_conf["tat_label"], info=lg_conf["tat_info"], ) with gr.Column(): with gr.Accordion( lg_conf["extra_setting"], open=False ): docs_translate_process_dropdown = gr.Dropdown( DOCS_TRANSLATION_PROCESS_OPTIONS, value=DOCS_TRANSLATION_PROCESS_OPTIONS[ 0 ], label="Translation process", ) gr.HTML("
") docs_output_type = gr.Dropdown( DOCS_OUTPUT_TYPE_OPTIONS, value=DOCS_OUTPUT_TYPE_OPTIONS[2], label="Output type", ) docs_OUTPUT_NAME = gr.Textbox( label="Final file name", value="", info=lg_conf["out_name_info"], ) docs_chunk_size = gr.Number( label=lg_conf["chunk_size_label"], value=0, visible=True, interactive=True, info=lg_conf["chunk_size_info"], ) gr.HTML("
") start_page_gui = gr.Number( step=1, value=1, minimum=1, maximum=99999, label="Start page", ) end_page_gui = gr.Number( step=1, value=99999, minimum=1, maximum=99999, label="End page", ) gr.HTML("
Videobook config") videobook_width_gui = gr.Number( step=1, value=1280, minimum=100, maximum=4096, label="Width", ) videobook_height_gui = gr.Number( step=1, value=720, minimum=100, maximum=4096, label="Height", ) videobook_bcolor_gui = gr.Dropdown( BORDER_COLORS, value=BORDER_COLORS[0], label="Border color", ) docs_dummy_check = gr.Checkbox( True, visible=False ) with gr.Row(): docs_button = gr.Button( lg_conf["docs_button"], variant="primary", ) with gr.Row(): docs_output = gr.File( label="Result", interactive=False, ) with gr.Tab("Custom voice R.V.C. (Optional)"): with gr.Column(): with gr.Accordion("Get the R.V.C. Models", open=True): url_links = gr.Textbox( label="URLs", value="", info=lg_conf["cv_url_info"], placeholder="urls here...", lines=1, ) download_finish = gr.HTML() download_button = gr.Button("DOWNLOAD MODELS") def update_models(): models_path, index_path = upload_model_list() dict_models = { f"fmodel{i:02d}": gr.update( choices=models_path ) for i in range(MAX_TTS+1) } dict_index = { f"findex{i:02d}": gr.update( choices=index_path, value=None ) for i in range(MAX_TTS+1) } dict_changes = {**dict_models, **dict_index} return [value for value in dict_changes.values()] with gr.Column(): with gr.Accordion(lg_conf["replace_title"], open=False): with gr.Column(variant="compact"): with gr.Column(): gr.Markdown(lg_conf["sec1_title"]) enable_custom_voice = gr.Checkbox( False, label="ENABLE", info=lg_conf["enable_replace"] ) workers_custom_voice = gr.Number( step=1, value=1, minimum=1, maximum=50, label="workers", visible=False, ) gr.Markdown(lg_conf["sec2_title"]) gr.Markdown(lg_conf["sec2_subtitle"]) PITCH_ALGO_OPT = [ "pm", "harvest", "crepe", "rmvpe", "rmvpe+", ] def model_conf(): return gr.Dropdown( models_path, # value="", label="Model", visible=True, interactive=True, ) def pitch_algo_conf(): return gr.Dropdown( PITCH_ALGO_OPT, value=PITCH_ALGO_OPT[3], label="Pitch algorithm", visible=True, interactive=True, ) def pitch_lvl_conf(): return gr.Slider( label="Pitch level", minimum=-24, maximum=24, step=1, value=0, visible=True, interactive=True, ) def index_conf(): return gr.Dropdown( index_path, value=None, label="Index", visible=True, interactive=True, ) def index_inf_conf(): return gr.Slider( minimum=0, maximum=1, label="Index influence", value=0.75, ) def respiration_filter_conf(): return gr.Slider( minimum=0, maximum=7, label="Respiration median filtering", value=3, step=1, interactive=True, ) def envelope_ratio_conf(): return gr.Slider( minimum=0, maximum=1, label="Envelope ratio", value=0.25, interactive=True, ) def consonant_protec_conf(): return gr.Slider( minimum=0, maximum=0.5, label="Consonant breath protection", value=0.5, interactive=True, ) def button_conf(tts_name): return gr.Button( lg_conf["cv_button_apply"]+" "+tts_name, variant="primary", ) TTS_TABS = [ 'TTS Speaker {:02d}'.format(i) for i in range(1, MAX_TTS+1) ] CV_SUBTITLES = [ lg_conf["cv_tts1"], lg_conf["cv_tts2"], lg_conf["cv_tts3"], lg_conf["cv_tts4"], lg_conf["cv_tts5"], lg_conf["cv_tts6"], lg_conf["cv_tts7"], lg_conf["cv_tts8"], lg_conf["cv_tts9"], lg_conf["cv_tts10"], lg_conf["cv_tts11"], lg_conf["cv_tts12"], ] configs_storage = [] for i in range(MAX_TTS): # Loop from 00 to 11 with gr.Accordion(CV_SUBTITLES[i], open=False): gr.Markdown(TTS_TABS[i]) with gr.Column(): tag_gui = gr.Textbox( value=TTS_TABS[i], visible=False ) model_gui = model_conf() pitch_algo_gui = pitch_algo_conf() pitch_lvl_gui = pitch_lvl_conf() index_gui = index_conf() index_inf_gui = index_inf_conf() rmf_gui = respiration_filter_conf() er_gui = envelope_ratio_conf() cbp_gui = consonant_protec_conf() with gr.Row(variant="compact"): button_config = button_conf( TTS_TABS[i] ) confirm_conf = gr.HTML() button_config.click( SoniTr.vci.apply_conf, inputs=[ tag_gui, model_gui, pitch_algo_gui, pitch_lvl_gui, index_gui, index_inf_gui, rmf_gui, er_gui, cbp_gui, ], outputs=[confirm_conf], ) configs_storage.append({ "tag": tag_gui, "model": model_gui, "index": index_gui, }) with gr.Column(): with gr.Accordion("Test R.V.C.", open=False): with gr.Row(variant="compact"): text_test = gr.Textbox( label="Text", value="This is an example", info="write a text", placeholder="...", lines=5, ) with gr.Column(): tts_test = gr.Dropdown( sorted(SoniTr.tts_info.list_edge), value="en-GB-ThomasNeural-Male", label="TTS", visible=True, interactive=True, ) model_test = model_conf() index_test = index_conf() pitch_test = pitch_lvl_conf() pitch_alg_test = pitch_algo_conf() with gr.Row(variant="compact"): button_test = gr.Button("Test audio") with gr.Column(): with gr.Row(): original_ttsvoice = gr.Audio() ttsvoice = gr.Audio() button_test.click( SoniTr.vci.make_test, inputs=[ text_test, tts_test, model_test, index_test, pitch_test, pitch_alg_test, ], outputs=[ttsvoice, original_ttsvoice], ) download_button.click( download_list, [url_links], [download_finish], queue=False ).then( update_models, [], [ elem["model"] for elem in configs_storage ] + [model_test] + [ elem["index"] for elem in configs_storage ] + [index_test], ) with gr.Tab(lg_conf["tab_help"]): gr.Markdown(lg_conf["tutorial"]) gr.Markdown(news) def play_sound_alert(play_sound): if not play_sound: return None # silent_sound = "assets/empty_audio.mp3" sound_alert = "assets/sound_alert.mp3" time.sleep(0.25) # yield silent_sound yield None time.sleep(0.25) yield sound_alert sound_alert_notification = gr.Audio( value=None, type="filepath", format="mp3", autoplay=True, visible=False, ) if logs_in_gui: logger.info("Logs in gui need public url") class Logger: def __init__(self, filename): this.terminal = sys.stdout this.log = open(filename, "w") def write(self, message): this.terminal.write(message) this.log.write(message) def flush(self): this.terminal.flush() this.log.flush() def isatty(self): return False sys.stdout = Logger("output.log") def read_logs(): sys.stdout.flush() with open("output.log", "r") as f: return f.read() with gr.Accordion("Logs", open=False): logs = gr.Textbox(label=">>>") app.load(read_logs, None, logs, every=1) if SoniTr.tts_info.xtts_enabled: # Update tts list def update_tts_list(): update_dict = { f"tts_voice{i:02d}": gr.update(choices=SoniTr.tts_info.tts_list()) for i in range(MAX_TTS) } update_dict["tts_documents"] = gr.update( choices=list( filter( lambda x: x != "_XTTS_/AUTOMATIC.wav", SoniTr.tts_info.tts_list(), ) ) ) return [value for value in update_dict.values()] create_xtts_wav.click( create_wav_file_vc, inputs=[ wav_speaker_name, wav_speaker_file, wav_speaker_start, wav_speaker_end, wav_speaker_dir, wav_speaker_dereverb, ], outputs=[wav_speaker_output], ).then( update_tts_list, None, [ tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05, tts_voice06, tts_voice07, tts_voice08, tts_voice09, tts_voice10, tts_voice11, tts_documents, ], ) # Run translate text subs_button.click( SoniTr.batch_multilingual_media_conversion, inputs=[ video_input, blink_input, directory_input, HFKEY, PREVIEW, WHISPER_MODEL_SIZE, batch_size, compute_type, SOURCE_LANGUAGE, TRANSLATE_AUDIO_TO, min_speakers, max_speakers, tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05, tts_voice06, tts_voice07, tts_voice08, tts_voice09, tts_voice10, tts_voice11, VIDEO_OUTPUT_NAME, AUDIO_MIX, audio_accelerate, acceleration_rate_regulation_gui, video_acceleration_rate_regulation_gui, # New option volume_original_mix, volume_translated_mix, sub_type_output, edit_sub_check, # TRUE BY DEFAULT dummy_false_check, # dummy false subs_edit_space, avoid_overlap_gui, vocal_refinement_gui, literalize_numbers_gui, segment_duration_limit_gui, diarization_process_dropdown, translate_process_dropdown, input_srt, main_output_type, main_voiceless_track, voice_imitation_gui, voice_imitation_max_segments_gui, voice_imitation_vocals_dereverb_gui, voice_imitation_remove_previous_gui, voice_imitation_method_gui, wav_speaker_dereverb, text_segmentation_scale_gui, divide_text_segments_by_gui, soft_subtitles_to_video_gui, burn_subtitles_to_video_gui, enable_cache_gui, enable_custom_voice, workers_custom_voice, is_gui_dummy_check, ], outputs=subs_edit_space, ).then( play_sound_alert, [play_sound_gui], [sound_alert_notification] ) # Run translate tts and complete video_button.click( SoniTr.batch_multilingual_media_conversion, inputs=[ video_input, blink_input, directory_input, HFKEY, PREVIEW, WHISPER_MODEL_SIZE, batch_size, compute_type, SOURCE_LANGUAGE, TRANSLATE_AUDIO_TO, min_speakers, max_speakers, tts_voice00, tts_voice01, tts_voice02, tts_voice03, tts_voice04, tts_voice05, tts_voice06, tts_voice07, tts_voice08, tts_voice09, tts_voice10, tts_voice11, VIDEO_OUTPUT_NAME, AUDIO_MIX, audio_accelerate, acceleration_rate_regulation_gui, video_acceleration_rate_regulation_gui, # New option volume_original_mix, volume_translated_mix, sub_type_output, dummy_false_check, edit_sub_check, subs_edit_space, avoid_overlap_gui, vocal_refinement_gui, literalize_numbers_gui, segment_duration_limit_gui, diarization_process_dropdown, translate_process_dropdown, input_srt, main_output_type, main_voiceless_track, voice_imitation_gui, voice_imitation_max_segments_gui, voice_imitation_vocals_dereverb_gui, voice_imitation_remove_previous_gui, voice_imitation_method_gui, wav_speaker_dereverb, text_segmentation_scale_gui, divide_text_segments_by_gui, soft_subtitles_to_video_gui, burn_subtitles_to_video_gui, enable_cache_gui, enable_custom_voice, workers_custom_voice, is_gui_dummy_check, ], outputs=video_output, trigger_mode="multiple", ).then( play_sound_alert, [play_sound_gui], [sound_alert_notification] ) # Run docs process docs_button.click( SoniTr.multilingual_docs_conversion, inputs=[ text_docs, input_docs, directory_input_docs, docs_SOURCE_LANGUAGE, docs_TRANSLATE_TO, tts_documents, docs_OUTPUT_NAME, docs_translate_process_dropdown, docs_output_type, docs_chunk_size, enable_custom_voice, workers_custom_voice, start_page_gui, end_page_gui, videobook_width_gui, videobook_height_gui, videobook_bcolor_gui, docs_dummy_check, ], outputs=docs_output, trigger_mode="multiple", ).then( play_sound_alert, [play_sound_gui], [sound_alert_notification] ) return app def get_language_config(language_data, language=None, base_key="english"): base_lang = language_data.get(base_key) if language not in language_data: logger.error( f"Language {language} not found, defaulting to {base_key}" ) return base_lang lg_conf = language_data.get(language, {}) lg_conf.update((k, v) for k, v in base_lang.items() if k not in lg_conf) return lg_conf def create_parser(): parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( "--theme", type=str, default="Taithrah/Minimal", help=( "Specify the theme; find themes in " "https://huggingface.co/spaces/gradio/theme-gallery;" " Example: --theme aliabid94/new-theme" ), ) parser.add_argument( "--public_url", action="store_true", default=False, help="Enable public link", ) parser.add_argument( "--logs_in_gui", action="store_true", default=False, help="Displays the operations performed in Logs", ) parser.add_argument( "--verbosity_level", type=str, default="info", help=( "Set logger verbosity level: " "debug, info, warning, error, or critical" ), ) parser.add_argument( "--language", type=str, default="english", help=" Select the language of the interface: english, spanish", ) parser.add_argument( "--cpu_mode", action="store_true", default=False, help="Enable CPU mode to run the program without utilizing GPU acceleration.", ) return parser if __name__ == "__main__": parser = create_parser() args = parser.parse_args() # Simulating command-line arguments # args_list = "--theme aliabid94/new-theme --public_url".split() # args = parser.parse_args(args_list) set_logging_level(args.verbosity_level) for id_model in UVR_MODELS: download_manager( os.path.join(MDX_DOWNLOAD_LINK, id_model), mdxnet_models_dir ) models_path, index_path = upload_model_list() SoniTr = SoniTranslate(cpu_mode=args.cpu_mode if os.environ.get("ZERO_GPU") != "TRUE" else "cpu") lg_conf = get_language_config(language_data, language=args.language) app = create_gui(args.theme, logs_in_gui=args.logs_in_gui) print(IS_HUGGINGFACE_SPACE) print(FORCE_PUBLIC_SHARE) app.queue() app.launch( max_threads=1, share=IS_HUGGINGFACE_SPACE or FORCE_PUBLIC_SHARE, show_error=True, quiet=False, debug=(True if logger.isEnabledFor(logging.DEBUG) else False), )