model: base_learning_rate: 1.0e-04 target: extern.ldm_zero123.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.00085 linear_end: 0.0120 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: "image_target" cond_stage_key: "image_cond" image_size: 32 channels: 4 cond_stage_trainable: false # Note: different from the one we trained before conditioning_key: hybrid monitor: val/loss_simple_ema scale_factor: 0.18215 scheduler_config: # 10000 warmup steps target: extern.ldm_zero123.lr_scheduler.LambdaLinearScheduler params: warm_up_steps: [ 100 ] cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases f_start: [ 1.e-6 ] f_max: [ 1. ] f_min: [ 1. ] unet_config: target: extern.ldm_zero123.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 # unused in_channels: 8 out_channels: 4 model_channels: 320 attention_resolutions: [ 4, 2, 1 ] num_res_blocks: 2 channel_mult: [ 1, 2, 4, 4 ] num_heads: 8 use_spatial_transformer: True transformer_depth: 1 context_dim: 768 use_checkpoint: True legacy: False first_stage_config: target: extern.ldm_zero123.models.autoencoder.AutoencoderKL params: embed_dim: 4 monitor: val/rec_loss ddconfig: double_z: true z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 4 - 4 num_res_blocks: 2 attn_resolutions: [] dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: extern.ldm_zero123.modules.encoders.modules.FrozenCLIPImageEmbedder # data: # target: extern.ldm_zero123.data.simple.ObjaverseDataModuleFromConfig # params: # root_dir: 'views_whole_sphere' # batch_size: 192 # num_workers: 16 # total_view: 4 # train: # validation: False # image_transforms: # size: 256 # validation: # validation: True # image_transforms: # size: 256 # lightning: # find_unused_parameters: false # metrics_over_trainsteps_checkpoint: True # modelcheckpoint: # params: # every_n_train_steps: 5000 # callbacks: # image_logger: # target: main.ImageLogger # params: # batch_frequency: 500 # max_images: 32 # increase_log_steps: False # log_first_step: True # log_images_kwargs: # use_ema_scope: False # inpaint: False # plot_progressive_rows: False # plot_diffusion_rows: False # N: 32 # unconditional_scale: 3.0 # unconditional_label: [""] # trainer: # benchmark: True # val_check_interval: 5000000 # really sorry # num_sanity_val_steps: 0 # accumulate_grad_batches: 1