# Copyright (c) 2020 Huawei Technologies Co., Ltd. # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode # # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob import os import time from collections import OrderedDict import numpy as np import torch import cv2 import argparse from natsort import natsort from skimage.metrics import structural_similarity as ssim from skimage.metrics import peak_signal_noise_ratio as psnr import lpips class Measure(): def __init__(self, net='alex', use_gpu=False): self.device = 'cuda' if use_gpu else 'cpu' self.model = lpips.LPIPS(net=net) self.model.to(self.device) def measure(self, imgA, imgB): return [float(f(imgA, imgB)) for f in [self.psnr, self.ssim, self.lpips]] def lpips(self, imgA, imgB, model=None): tA = t(imgA).to(self.device) tB = t(imgB).to(self.device) dist01 = self.model.forward(tA, tB).item() return dist01 def ssim(self, imgA, imgB): # multichannel: If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged. score, diff = ssim(imgA, imgB, full=True, multichannel=True, channel_axis=-1) return score def psnr(self, imgA, imgB): psnr_val = psnr(imgA, imgB) return psnr_val def t(img): def to_4d(img): assert len(img.shape) == 3 assert img.dtype == np.uint8 img_new = np.expand_dims(img, axis=0) assert len(img_new.shape) == 4 return img_new def to_CHW(img): return np.transpose(img, [2, 0, 1]) def to_tensor(img): return torch.Tensor(img) return to_tensor(to_4d(to_CHW(img))) / 127.5 - 1 def fiFindByWildcard(wildcard): return natsort.natsorted(glob.glob(wildcard, recursive=True)) def imread(path): return cv2.imread(path)[:, :, [2, 1, 0]] def format_result(psnr, ssim, lpips): return f'{psnr:0.2f}, {ssim:0.3f}, {lpips:0.3f}' def measure_dirs(dirA, dirB, use_gpu, verbose=False): if verbose: vprint = lambda x: print(x) else: vprint = lambda x: None t_init = time.time() paths_A = fiFindByWildcard(os.path.join(dirA, f'*.{type}')) paths_B = fiFindByWildcard(os.path.join(dirB, f'*.{type}')) vprint("Comparing: ") vprint(dirA) vprint(dirB) measure = Measure(use_gpu=use_gpu) results = [] for pathA, pathB in zip(paths_A, paths_B): result = OrderedDict() t = time.time() result['psnr'], result['ssim'], result['lpips'] = measure.measure(imread(pathA), imread(pathB)) d = time.time() - t vprint(f"{pathA.split('/')[-1]}, {pathB.split('/')[-1]}, {format_result(**result)}, {d:0.1f}") results.append(result) psnr = np.mean([result['psnr'] for result in results]) ssim = np.mean([result['ssim'] for result in results]) lpips = np.mean([result['lpips'] for result in results]) vprint(f"Final Result: {format_result(psnr, ssim, lpips)}, {time.time() - t_init:0.1f}s") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-dirA', default='', type=str) parser.add_argument('-dirB', default='', type=str) parser.add_argument('-type', default='png') parser.add_argument('--use_gpu', action='store_true', default=False) args = parser.parse_args() dirA = args.dirA dirB = args.dirB type = args.type use_gpu = args.use_gpu if len(dirA) > 0 and len(dirB) > 0: measure_dirs(dirA, dirB, use_gpu=use_gpu, verbose=True)