# Copyright (c) 2020 Huawei Technologies Co., Ltd. # Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode # # The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file contains content licensed by https://github.com/xinntao/BasicSR/blob/master/LICENSE/LICENSE import glob import sys from collections import OrderedDict from natsort import natsort import options.options as option from Measure import Measure, psnr from imresize import imresize from models import create_model import torch from utils.util import opt_get import numpy as np import pandas as pd import os import cv2 def fiFindByWildcard(wildcard): return natsort.natsorted(glob.glob(wildcard, recursive=True)) def load_model(conf_path): opt = option.parse(conf_path, is_train=False) opt['gpu_ids'] = None opt = option.dict_to_nonedict(opt) model = create_model(opt) model_path = opt_get(opt, ['model_path'], None) model.load_network(load_path=model_path, network=model.netG) return model, opt def predict(model, lr): model.feed_data({"LQ": t(lr)}, need_GT=False) model.test() visuals = model.get_current_visuals(need_GT=False) return visuals.get('rlt', visuals.get("SR")) def t(array): return torch.Tensor(np.expand_dims(array.transpose([2, 0, 1]), axis=0).astype(np.float32)) / 255 def rgb(t): return ( np.clip((t[0] if len(t.shape) == 4 else t).detach().cpu().numpy().transpose([1, 2, 0]), 0, 1) * 255).astype( np.uint8) def imread(path): return cv2.imread(path)[:, :, [2, 1, 0]] def imwrite(path, img): os.makedirs(os.path.dirname(path), exist_ok=True) cv2.imwrite(path, img[:, :, [2, 1, 0]]) def imCropCenter(img, size): h, w, c = img.shape h_start = max(h // 2 - size // 2, 0) h_end = min(h_start + size, h) w_start = max(w // 2 - size // 2, 0) w_end = min(w_start + size, w) return img[h_start:h_end, w_start:w_end] def impad(img, top=0, bottom=0, left=0, right=0, color=255): return np.pad(img, [(top, bottom), (left, right), (0, 0)], 'reflect') def main(): conf_path = sys.argv[1] conf = conf_path.split('/')[-1].replace('.yml', '') model, opt = load_model(conf_path) data_dir = opt['dataroot'] # this_dir = os.path.dirname(os.path.realpath(__file__)) test_dir = os.path.join('/kaggle/working/', 'results', conf) print(f"Out dir: {test_dir}") measure = Measure(use_gpu=False) fname = f'measure_full.csv' fname_tmp = fname + "_" path_out_measures = os.path.join(test_dir, fname_tmp) path_out_measures_final = os.path.join(test_dir, fname) if os.path.isfile(path_out_measures_final): df = pd.read_csv(path_out_measures_final) elif os.path.isfile(path_out_measures): df = pd.read_csv(path_out_measures) else: df = None scale = opt['scale'] pad_factor = 2 data_sets = [ 'Set5', 'Set14', 'Urban100', 'BSD100' ] final_df = pd.DataFrame() for data_set in data_sets: lr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*LR.png')) hr_paths = fiFindByWildcard(os.path.join(data_dir, data_set, '*HR.png')) df = pd.DataFrame(columns=['conf', 'heat', 'data_set', 'name', 'PSNR', 'SSIM', 'LPIPS', 'LRC PSNR']) for lr_path, hr_path, idx_test in zip(lr_paths, hr_paths, range(len(lr_paths))): with torch.no_grad(), torch.cuda.amp.autocast(): lr = imread(lr_path) hr = imread(hr_path) # Pad image to be % 2 h, w, c = lr.shape lq_orig = lr.copy() lr = impad(lr, bottom=int(np.ceil(h / pad_factor) * pad_factor - h), right=int(np.ceil(w / pad_factor) * pad_factor - w)) lr_t = t(lr) heat = opt['heat'] if df is not None and len(df[(df['heat'] == heat) & (df['name'] == idx_test)]) == 1: continue sr_t = model.get_sr(lq=lr_t, heat=heat) sr = rgb(torch.clamp(sr_t, 0, 1)) sr = sr[:h * scale, :w * scale] path_out_sr = os.path.join(test_dir, data_set, "{:0.2f}".format(heat).replace('.', ''), "{:06d}.png".format(idx_test)) imwrite(path_out_sr, sr) meas = OrderedDict(conf=conf, heat=heat, data_set=data_set, name=idx_test) meas['PSNR'], meas['SSIM'], meas['LPIPS'] = measure.measure(sr, hr) lr_reconstruct_rgb = imresize(sr, 1 / opt['scale']) meas['LRC PSNR'] = psnr(lq_orig, lr_reconstruct_rgb) str_out = format_measurements(meas) print(str_out) df = df._append(pd.DataFrame([meas]), ignore_index=True) final_df = pd.concat([final_df, df]) final_df.to_csv(path_out_measures, index=False) os.rename(path_out_measures, path_out_measures_final) # str_out = format_measurements(df.mean()) # print(f"Results in: {path_out_measures_final}") # print('Mean: ' + str_out) def format_measurements(meas): s_out = [] for k, v in meas.items(): v = f"{v:0.2f}" if isinstance(v, float) else v s_out.append(f"{k}: {v}") str_out = ", ".join(s_out) return str_out if __name__ == "__main__": main()