import os import torch import ldm_patched.modules.model_management as model_management from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from modules.model_loader import load_file_from_url from modules.config import path_clip_vision from ldm_patched.modules.model_patcher import ModelPatcher from extras.BLIP.models.blip import blip_decoder blip_image_eval_size = 384 blip_repo_root = os.path.join(os.path.dirname(__file__), 'BLIP') class Interrogator: def __init__(self): self.blip_model = None self.load_device = torch.device('cpu') self.offload_device = torch.device('cpu') self.dtype = torch.float32 @torch.no_grad() @torch.inference_mode() def interrogate(self, img_rgb): if self.blip_model is None: filename = load_file_from_url( url='https://huggingface.co/lllyasviel/misc/resolve/main/model_base_caption_capfilt_large.pth', model_dir=path_clip_vision, file_name='model_base_caption_capfilt_large.pth', ) model = blip_decoder(pretrained=filename, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(blip_repo_root, "configs", "med_config.json")) model.eval() self.load_device = model_management.text_encoder_device() self.offload_device = model_management.text_encoder_offload_device() self.dtype = torch.float32 model.to(self.offload_device) if model_management.should_use_fp16(device=self.load_device): model.half() self.dtype = torch.float16 self.blip_model = ModelPatcher(model, load_device=self.load_device, offload_device=self.offload_device) model_management.load_model_gpu(self.blip_model) gpu_image = transforms.Compose([ transforms.ToTensor(), transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ])(img_rgb).unsqueeze(0).to(device=self.load_device, dtype=self.dtype) caption = self.blip_model.model.generate(gpu_image, sample=True, num_beams=1, max_length=75)[0] return caption default_interrogator = Interrogator().interrogate