# utils.py import torch import numpy as np import matplotlib.pyplot as plt from gmm import GaussianMixtureModel def initialize_gmm(mu_list, Sigma_list, pi_list): mu = torch.tensor(mu_list, dtype=torch.float32) Sigma = torch.tensor(Sigma_list, dtype=torch.float32) pi = torch.tensor(pi_list, dtype=torch.float32) return GaussianMixtureModel(mu, Sigma, pi) def generate_grid(dx): x_positions = np.arange(-10, 10.5, 0.5) y_positions = np.arange(-10, 10.5, 0.5) fine_points = np.arange(-10, 10 + dx, dx) ones_same_size = np.ones_like(fine_points) vertical_lines = [np.stack([x*ones_same_size, fine_points], axis=1) for x in x_positions] horizontal_lines = [np.stack([fine_points, y*ones_same_size], axis=1) for y in y_positions] grid_points = np.concatenate(vertical_lines + horizontal_lines, axis=0) return torch.tensor(grid_points, dtype=torch.float32) def generate_contours(dtheta): angles = np.linspace(0, 2 * np.pi, int(2 * np.pi / dtheta)) std_normal_contours = np.concatenate([np.stack([r * np.cos(angles), r * np.sin(angles)], axis=1) for r in range(1, 4)], axis=0) return torch.tensor(std_normal_contours, dtype=torch.float32) def transform_std_to_gmm_contours(std_contours, mu, Sigma): gmm_contours = [] for k in range(mu.shape[0]): L = torch.linalg.cholesky(Sigma[k]) gmm_contours.append(mu[k] + torch.matmul(std_contours, L.T)) return torch.cat(gmm_contours, dim=0) def generate_intermediate_points(gmm, grid_points, std_normal_contours, gmm_samples, normal_samples, T, N): gmm_contours = transform_std_to_gmm_contours(std_normal_contours, gmm.mu.squeeze(), gmm.Sigma) intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(gmm_samples.clone(), T, N) contour_intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(gmm_contours.clone(), T, N) grid_intermediate_points_gmm_to_normal = gmm.flow_gmm_to_normal(grid_points.clone(), T, N) intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(normal_samples.clone(), T, N) contour_intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(std_normal_contours.clone(), T, N) grid_intermediate_points_normal_to_gmm = gmm.flow_normal_to_gmm(grid_points.clone(), T, N) return (intermediate_points_gmm_to_normal, contour_intermediate_points_gmm_to_normal, grid_intermediate_points_gmm_to_normal, intermediate_points_normal_to_gmm, contour_intermediate_points_normal_to_gmm, grid_intermediate_points_normal_to_gmm) def plot_samples_and_contours(samples, contours, grid_points, title): fig, ax = plt.subplots(figsize=(8, 6)) ax.scatter(grid_points[:, 0], grid_points[:, 1], alpha=0.5, c='black', s=1, label='Grid Points') ax.scatter(contours[:, 0], contours[:, 1], alpha=0.5, s=3, c='blue', label='Contours') ax.scatter(samples[:, 0], samples[:, 1], alpha=0.5, c='red', label='Samples') ax.set_title(title) ax.set_xlabel("x1") ax.set_ylabel("x2") ax.grid(True) ax.legend(loc='upper right') ax.set_xlim(-5, 5) ax.set_ylim(-5, 5) ax.set_aspect('equal', adjustable='box') plt.close(fig) return fig, ax