import numpy as np import torch def cart_to_hom(pts): """ :param pts: (N, 3 or 2) :return pts_hom: (N, 4 or 3) """ if isinstance(pts, np.ndarray): pts_hom = np.concatenate((pts, np.ones([*pts.shape[:-1], 1], dtype=np.float32)), -1) else: ones = torch.ones([*pts.shape[:-1], 1], dtype=torch.float32, device=pts.device) pts_hom = torch.cat((pts, ones), dim=-1) return pts_hom def hom_to_cart(pts): return pts[..., :-1] / pts[..., -1:] def canonical_to_camera(pts, pose): pts = cart_to_hom(pts) pts = pts @ pose.transpose(-1, -2) pts = hom_to_cart(pts) return pts def rect_to_img(K, pts_rect): from dl_ext.vision_ext.datasets.kitti.structures import Calibration pts_2d_hom = pts_rect @ K.t() pts_img = Calibration.hom_to_cart(pts_2d_hom) return pts_img def calc_pose(phis, thetas, size, radius=1.2): import torch def normalize(vectors): return vectors / (torch.norm(vectors, dim=-1, keepdim=True) + 1e-10) thetas = torch.FloatTensor(thetas) phis = torch.FloatTensor(phis) centers = torch.stack([ radius * torch.sin(thetas) * torch.sin(phis), -radius * torch.cos(thetas) * torch.sin(phis), radius * torch.cos(phis), ], dim=-1) # [B, 3] # lookat forward_vector = normalize(centers).squeeze(0) up_vector = torch.FloatTensor([0, 0, 1]).unsqueeze(0).repeat(size, 1) right_vector = normalize(torch.cross(up_vector, forward_vector, dim=-1)) if right_vector.pow(2).sum() < 0.01: right_vector = torch.FloatTensor([0, 1, 0]).unsqueeze(0).repeat(size, 1) up_vector = normalize(torch.cross(forward_vector, right_vector, dim=-1)) poses = torch.eye(4, dtype=torch.float).unsqueeze(0).repeat(size, 1, 1) poses[:, :3, :3] = torch.stack((right_vector, up_vector, forward_vector), dim=-1) poses[:, :3, 3] = centers return poses