#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for seq2seq, text to image. Script adapted from run_summarization_flax.py """ # You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments. import logging as pylogging # To avoid collision with transformers.utils.logging import os import sys import time from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Optional import datasets import nltk # Here to have a nice missing dependency error message early on import numpy as np from datasets import Dataset, load_dataset, load_metric from tqdm import tqdm import jax import jax.numpy as jnp import optax import transformers from filelock import FileLock from flax import jax_utils, traverse_util import flax.linen as nn from flax.jax_utils import unreplicate from flax.training import train_state from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, AutoConfig, AutoTokenizer, FlaxAutoModelForSeq2SeqLM, FlaxBartForConditionalGeneration, HfArgumentParser, TrainingArguments, is_tensorboard_available, ) from transformers.models.bart.modeling_flax_bart import * from transformers.file_utils import is_offline_mode import wandb logger = pylogging.getLogger(__name__) try: nltk.data.find("tokenizers/punkt") except (LookupError, OSError): if is_offline_mode(): raise LookupError( "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" ) with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) # Model hyperparameters, for convenience OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos BOS_TOKEN_ID = 16384 BASE_MODEL = 'facebook/bart-large-cnn' @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=BASE_MODEL, metadata={ "help": "The model checkpoint for weights initialization." "Don't set if you want to train a model from scratch." }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) text_column: Optional[str] = field( default='caption', metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, ) encoding_column: Optional[str] = field( default='encoding', metadata={"help": "The name of the column in the datasets containing the image encodings."}, ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input predict data file to do prediction on (a text file)."}, ) max_source_length: Optional[int] = field( default=128, metadata={ "help": "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) max_target_length: Optional[int] = field( default=OUTPUT_LENGTH, metadata={ "help": "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." }, ) val_max_target_length: Optional[int] = field( default=OUTPUT_LENGTH, metadata={ "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`." "This argument is also used to override the `max_length` param of `model.generate`, which is used " "during evaluation." }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) source_prefix: Optional[str] = field( default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."} ) predict_with_generate: bool = field( default=False, metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) num_beams: Optional[int] = field( default=None, metadata={ "help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, " "which is used during evaluation." }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) log_interval: Optional[int] = field( default=5, metadata={ "help": "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." }, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["tsv", "csv", "json"], "`train_file` should be a tsv, csv or json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["tsv", "csv", "json"], "`validation_file` should be a tsv, csv or json file." if self.val_max_target_length is None: self.val_max_target_length = self.max_target_length class TrainState(train_state.TrainState): dropout_rng: jnp.ndarray grad_accum: jnp.ndarray optimizer_step: int def replicate(self): return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng)) class CustomFlaxBartModule(FlaxBartModule): def setup(self): # we keep shared to easily load pre-trained weights self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), dtype=self.dtype, ) # a separate embedding is used for the decoder self.decoder_embed = nn.Embed( OUTPUT_VOCAB_SIZE, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), dtype=self.dtype, ) self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) # the decoder has a different config decoder_config = BartConfig(self.config.to_dict()) decoder_config.max_position_embeddings = OUTPUT_LENGTH decoder_config.min_length = OUTPUT_LENGTH decoder_config.max_length = OUTPUT_LENGTH decoder_config.vocab_size = OUTPUT_VOCAB_SIZE self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed) class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule): def setup(self): self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( OUTPUT_VOCAB_SIZE, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE)) class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration): module_class = CustomFlaxBartForConditionalGenerationModule def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): """ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if `shuffle` is `True`. """ steps_per_epoch = len(dataset) // batch_size if shuffle: batch_idx = jax.random.permutation(rng, len(dataset)) else: batch_idx = jnp.arange(len(dataset)) batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) for idx in batch_idx: batch = dataset[idx] batch = {k: jnp.array(v) for k, v in batch.items()} batch = shard(batch) yield batch def write_metric(summary_writer, train_metrics, eval_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = get_metrics(train_metrics) for key, vals in train_metrics.items(): tag = f"train_epoch/{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval/{metric_name}", value, step) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.array]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty." "Use --overwrite_output_dir to overcome." ) # Set up wandb run wandb.init( sync_tensorboard=True, entity='wandb', project='hf-flax-dalle-mini', job_type='Seq2SeqVQGAN', config=parser.parse_args() ) # Make one log on every process with the configuration for debugging. pylogging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=pylogging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(pylogging.INFO if jax.process_index() == 0 else pylogging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file if data_args.test_file is not None: data_files["test"] = data_args.test_file dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir, delimiter="\t") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer base_model = FlaxAutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) # Set up our new model config config = BartConfig.from_pretrained(model_args.model_name_or_path) config.tie_word_embeddings = False config.decoder_start_token_id = BOS_TOKEN_ID config.bos_token_id = BOS_TOKEN_ID # should not be used config.pos_token_id = BOS_TOKEN_ID # should not be needed (as we generate until max_length) config.eos_token_id = BOS_TOKEN_ID + 1 # unreachable #config.min_length = data_args.max_target_length # Set only in decoder? #config.max_length = data_args.max_target_length # Set only in decoder? print(f"TPUs: {jax.device_count()}") assert jax.device_count() == 8, "TPUs in use, please check running processes" # Create a custom model and initialize it randomly model = CustomFlaxBartForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)) # Use pre-trained weights for encoder model.params['model']['encoder'] = base_model.params['model']['encoder'] model.params['model']['shared'] = base_model.params['model']['shared'] del base_model prefix = data_args.source_prefix if data_args.source_prefix is not None else "" # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = dataset["train"].column_names elif training_args.do_eval: column_names = dataset["validation"].column_names elif training_args.do_predict: column_names = dataset["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # Get the column names for input/target. text_column = data_args.text_column encoding_column = data_args.encoding_column # Temporarily set max_target_length for training. max_target_length = data_args.max_target_length # In Flax, for seq2seq models we need to pass `decoder_input_ids` # as the Flax models don't accept `labels`, we need to prepare the decoder_input_ids here # for that dynamically import the `shift_tokens_right` function from the model file model_module = __import__(model.__module__, fromlist=["shift_tokens_tight"]) shift_tokens_right_fn = getattr(model_module, "shift_tokens_right") # Setting padding="max_length" as we need fixed length inputs for jitted functions def preprocess_function(examples): inputs = examples[text_column] inputs = [prefix + inp for inp in inputs] model_inputs = tokenizer( inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np" ) # set up targets # Note: we prepend the bos token instead of doing `shift_tokens_right` because the latter # removes the last token, and we know we don't need padding. In our case, labels # has a length of exactly 1 + 256, while shifting would produce 256 tokens. labels = [[config.decoder_start_token_id] + eval(indices) for indices in examples['encoding']] labels = np.asarray(labels) # We need the labels, in addition to the decoder_input_ids, for the compute_loss function # In our case, they are the same as decoder_input_ids. Is that correct? model_inputs["labels"] = labels # TODO: if data processing prevents correct compilation, we will: # - have data saved in JSONL (to avoid `eval` which is needed here to convert string "[2]" to list[int]) # - use below `shift_tokens_right_fn` # In our case, this prepends the bos token and removes the last one # decoder_input_ids = shift_tokens_right_fn( # jnp.array(labels), config.pad_token_id, config.decoder_start_token_id # ) model_inputs["decoder_input_ids"] = labels return model_inputs if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) train_dataset = train_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) if training_args.do_eval: max_target_length = data_args.val_max_target_length if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") eval_dataset = dataset["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) eval_dataset = eval_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) if training_args.do_predict: max_target_length = data_args.val_max_target_length if "test" not in dataset: raise ValueError("--do_predict requires a test dataset") predict_dataset = dataset["test"] if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) predict_dataset = predict_dataset.map( preprocess_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on prediction dataset", ) # Metric #metric = load_metric("rouge") def postprocess_text(preds, labels): preds = [pred.strip() for pred in preds] labels = [label.strip() for label in labels] # rougeLSum expects newline after each sentence preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds] labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels] return preds, labels def compute_metrics(preds, labels): decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) # Some simple post-processing decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True) # Extract a few results from ROUGE result = {key: value.mid.fmeasure * 100 for key, value in result.items()} prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] result["gen_len"] = np.mean(prediction_lens) result = {k: round(v, 4) for k, v in result.items()} return result # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() total_batch_size = int(train_batch_size) * training_args.gradient_accumulation_steps eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() steps_per_epoch = len(train_dataset) // train_batch_size total_steps = steps_per_epoch * num_epochs total_optimization_steps = (len(train_dataset) // total_batch_size) * num_epochs # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( len(train_dataset), total_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) # We use Optax's "masking" functionality to not apply weight decay # to bias and LayerNorm scale parameters. decay_mask_fn returns a # mask boolean with the same structure as the parameters. # The mask is True for parameters that should be decayed. # Note that this mask is specifically adapted for FlaxBart. # For FlaxT5, one should correct the layer norm parameter naming # accordingly - see `run_t5_mlm_flax.py` e.g. def decay_mask_fn(params): flat_params = traverse_util.flatten_dict(params) layer_norm_params = [ (name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"] ] flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params} return traverse_util.unflatten_dict(flat_mask) # create adam optimizer if training_args.adafactor: # We use the default parameters here to initialize adafactor, # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74 optimizer = optax.adafactor( learning_rate=linear_decay_lr_schedule_fn, ) else: optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, mask=decay_mask_fn, ) # Setup train state state = TrainState.create( apply_fn=model.__call__, params=model.params, tx=optimizer, dropout_rng=dropout_rng, grad_accum=jax.tree_map(jnp.zeros_like, model.params), optimizer_step=0, ) # label smoothed cross entropy def loss_fn(logits, labels): loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) loss = loss.mean() return loss # Define gradient update step fn def train_step(state, batch): dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss = loss_fn(logits, labels) return loss grad_fn = jax.value_and_grad(compute_loss) loss, grads = grad_fn(state.params) grad_accum = jax.tree_multimap(lambda x, y: x + y, grads, state.grad_accum) def update_fn(): grads = jax.tree_map(lambda x: x / training_args.gradient_accumulation_steps, grad_accum) grads = jax.lax.pmean(grads, "batch") new_state = state.apply_gradients( grads=grads, grad_accum=jax.tree_map(jnp.zeros_like, grads), optimizer_step=state.optimizer_step ) return new_state new_state = jax.lax.cond( state.step % training_args.gradient_accumulation_steps == 0, lambda _: update_fn(), lambda _: state.replace(grad_accum=grad_accum, step=state.step + 1), None, ) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.optimizer_step)} metrics = jax.lax.pmean(metrics, axis_name="batch") return new_state.replace(dropout_rng=new_dropout_rng), metrics # Define eval fn def eval_step(params, batch): labels = batch.pop("labels") logits = model(**batch, params=params, train=False)[0] loss = loss_fn(logits, labels) # summarize metrics metrics = {"loss": loss} metrics = jax.lax.pmean(metrics, axis_name="batch") return metrics # Define generation function max_length = ( data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length ) num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def generate_step(params, batch): model.params = params output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs) return output_ids.sequences # Create parallel version of the train and eval step p_train_step = jax.pmap( train_step, "batch", donate_argnums=(0,) ) p_eval_step = jax.pmap(eval_step, "batch") p_generate_step = jax.pmap(generate_step, "batch") # Replicate the train state on each device state = state.replicate() logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info( f" Total train batch size (w. parallel & distributed) = {train_batch_size * training_args.gradient_accumulation_steps}" ) logger.info(f" Total global steps = {total_steps}") logger.info(f" Total optimization steps = {total_optimization_steps}") train_time = 0 epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) global_step = 0 for epoch in epochs: # ======================== Training ================================ train_start = time.time() # Create sampling rng rng, input_rng = jax.random.split(rng) train_metrics = [] # Generate an epoch by shuffling sampling indices from the train dataset train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) steps_per_epoch = len(train_dataset) // train_batch_size # train for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): global_step +=1 batch = next(train_loader) state, train_metric = p_train_step(state, batch) train_metrics.append(train_metric) if global_step % data_args.log_interval == 0 and jax.process_index() == 0: for k, v in unreplicate(train_metric).items(): wandb.log({"train/step": global_step}) wandb.log({f"train/{k}": jax.device_get(v)}) train_time += time.time() - train_start train_metric = unreplicate(train_metric) epochs.write( f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})" ) # ======================== Evaluating ============================== eval_metrics = [] if training_args.do_eval: eval_preds = [] eval_labels = [] eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size) eval_steps = len(eval_dataset) // eval_batch_size for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): # Model forward batch = next(eval_loader) labels = batch["labels"] metrics = p_eval_step(state.params, batch) eval_metrics.append(metrics) # generation if data_args.predict_with_generate: generated_ids = p_generate_step(state.params, batch) eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1]))) # normalize eval metrics eval_metrics = get_metrics(eval_metrics) eval_metrics = jax.tree_map(jnp.mean, eval_metrics) # compute ROUGE metrics rouge_desc = "" # if data_args.predict_with_generate: # rouge_metrics = compute_metrics(eval_preds, eval_labels) # eval_metrics.update(rouge_metrics) # rouge_desc = " ".join([f"Eval {key}: {value} |" for key, value in rouge_metrics.items()]) # Print metrics and update progress bar desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']} | {rouge_desc})" epochs.write(desc) epochs.desc = desc # Save metrics if has_tensorboard and jax.process_index() == 0: cur_step = epoch * (len(train_dataset) // train_batch_size) write_metric(summary_writer, train_metrics, eval_metrics, train_time, cur_step) # ======================== Prediction loop ============================== if training_args.do_predict: logger.info("*** Predict ***") pred_metrics = [] pred_generations = [] pred_labels = [] pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size) pred_steps = len(predict_dataset) // eval_batch_size for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False): # Model forward batch = next(pred_loader) labels = batch["labels"] metrics = p_eval_step(state.params, batch) pred_metrics.append(metrics) # generation if data_args.predict_with_generate: generated_ids = p_generate_step(state.params, batch) pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"]))) pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1]))) # normalize prediction metrics pred_metrics = get_metrics(pred_metrics) pred_metrics = jax.tree_map(jnp.mean, pred_metrics) # compute ROUGE metrics rouge_desc = "" if data_args.predict_with_generate: rouge_metrics = compute_metrics(pred_generations, pred_labels) pred_metrics.update(rouge_metrics) rouge_desc = " ".join([f"Predict {key}: {value} |" for key, value in rouge_metrics.items()]) # Print metrics desc = f"Predict Loss: {pred_metrics['loss']} | {rouge_desc})" logger.info(desc) # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(jax.tree_map(lambda x: x[0], state.params)) model.save_pretrained( training_args.output_dir, params=params, push_to_hub=training_args.push_to_hub, commit_message=f"Saving weights and logs of epoch {epoch+1}", ) if __name__ == "__main__": main()