{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "ewer-Q-0w2xA" }, "source": [ "# Installation" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "NpsF9ipLLl2s", "outputId": "10bf54aa-b89d-4e42-9777-bc97b00a5f32" }, "outputs": [], "source": [ "#!pip install git+https://github.com/huggingface/transformers/\n", "#!pip install git+https://github.com/google/flax" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "M1wVkrpjU6zO" }, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "/home/tmabraham/vqgan-jax\n" ] } ], "source": [ "%cd ../../vqgan-jax" ] }, { "cell_type": "markdown", "metadata": { "id": "t47CH1H_IOT8" }, "source": [ "# Custom BART Model" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "9jQnM6S2vCpn" }, "outputs": [], "source": [ "# TODO: set those args in a config file\n", "OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n", "OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n", "BOS_TOKEN_ID = 16384\n", "BASE_MODEL = 'facebook/bart-large'" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "_eEaJVxAKpV5" }, "outputs": [], "source": [ "import jax\n", "import flax.linen as nn\n", "\n", "from transformers.models.bart.modeling_flax_bart import *\n", "from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n", "\n", "class CustomFlaxBartModule(FlaxBartModule):\n", " def setup(self):\n", " # we keep shared to easily load pre-trained weights\n", " self.shared = nn.Embed(\n", " self.config.vocab_size,\n", " self.config.d_model,\n", " embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n", " dtype=self.dtype,\n", " )\n", " # a separate embedding is used for the decoder\n", " self.decoder_embed = nn.Embed(\n", " OUTPUT_VOCAB_SIZE,\n", " self.config.d_model,\n", " embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n", " dtype=self.dtype,\n", " )\n", " self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n", "\n", " # the decoder has a different config\n", " decoder_config = BartConfig(self.config.to_dict())\n", " decoder_config.max_position_embeddings = OUTPUT_LENGTH\n", " decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n", " self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n", "\n", "class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n", " def setup(self):\n", " self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n", " self.lm_head = nn.Dense(\n", " OUTPUT_VOCAB_SIZE,\n", " use_bias=False,\n", " dtype=self.dtype,\n", " kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n", " )\n", " self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n", "\n", "class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n", " module_class = CustomFlaxBartForConditionalGenerationModule" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mtmabraham\u001b[0m (use `wandb login --relogin` to force relogin)\n" ] }, { "data": { "text/html": [ "\n", " Tracking run with wandb version 0.10.33<br/>\n", " Syncing run <strong style=\"color:#cdcd00\">rare-night-7</strong> to <a href=\"https://wandb.ai\" target=\"_blank\">Weights & Biases</a> <a href=\"https://docs.wandb.com/integrations/jupyter.html\" target=\"_blank\">(Documentation)</a>.<br/>\n", " Project page: <a href=\"https://wandb.ai/tmabraham/vqgan-jax\" target=\"_blank\">https://wandb.ai/tmabraham/vqgan-jax</a><br/>\n", " Run page: <a href=\"https://wandb.ai/tmabraham/vqgan-jax/runs/qzxavce8\" target=\"_blank\">https://wandb.ai/tmabraham/vqgan-jax/runs/qzxavce8</a><br/>\n", " Run data is saved locally in <code>/home/tmabraham/vqgan-jax/wandb/run-20210715_075019-qzxavce8</code><br/><br/>\n", " " ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Downloading large artifact model-1ef8yxby:latest, 1674.97MB. 2 files... Done. 0:0:0\n" ] } ], "source": [ "import wandb\n", "run = wandb.init()\n", "artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-1ef8yxby:latest', type='bart_model')\n", "artifact_dir = artifact.download()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "id": "_6-XKK40oEfP", "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/tmabraham/dalle-mini/src/transformers/src/transformers/models/bart/configuration_bart.py:180: UserWarning: Please make sure the config includes `forced_bos_token_id=16384` in future versions.The config can simply be saved and uploaded again to be fixed.\n", " warnings.warn(\n", "INFO:absl:Starting the local TPU driver.\n", "INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n", "INFO:absl:Unable to initialize backend 'gpu': Not found: Could not find registered platform with name: \"cuda\". Available platform names are: TPU Interpreter Host\n" ] } ], "source": [ "# create our model and initialize it randomly\n", "model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "model.config.forced_bos_token_id = None" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Jz032w73nHEf", "outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49" }, "outputs": [ { "data": { "text/plain": [ "(1, 16385)" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# we verify that the shape has not been modified\n", "model.params['final_logits_bias'].shape" ] }, { "cell_type": "markdown", "metadata": { "id": "zLl24Ez5t7x1" }, "source": [ "## Inference" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "XLLA2NK3uDQr" }, "outputs": [], "source": [ "tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "input_text = ['I enjoy walking with my cute dog']*8" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "P32mJJSbrU1F" }, "outputs": [], "source": [ "input_ids_test = tokenizer(input_text, return_tensors='jax')" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'input_ids': DeviceArray([[ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n", " 2],\n", " [ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n", " 2],\n", " [ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n", " 2],\n", " [ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n", " 2],\n", " [ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n", " 2],\n", " [ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n", " 2],\n", " [ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n", " 2],\n", " [ 0, 100, 2254, 3051, 19, 127, 11962, 2335,\n", " 2]], dtype=int32), 'attention_mask': DeviceArray([[1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " [1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " [1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " [1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " [1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " [1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " [1, 1, 1, 1, 1, 1, 1, 1, 1],\n", " [1, 1, 1, 1, 1, 1, 1, 1, 1]], dtype=int32)}" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "input_ids_test" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "C7cHbIHruELT" }, "outputs": [], "source": [ "greedy_output = model.generate(input_ids_test['input_ids'], max_length=257)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(8, 257)" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "greedy_output[0].shape" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "jYugh9cOuwc9", "outputId": "19c3a2ee-e7bc-4f1f-9c86-06bd7337b537" }, "outputs": [ { "data": { "text/plain": [ "DeviceArray([[16384, 10042, 10042, ..., 10042, 10042, 9570],\n", " [16384, 10042, 10042, ..., 10042, 10042, 9570],\n", " [16384, 10042, 10042, ..., 10042, 10042, 9570],\n", " ...,\n", " [16384, 10042, 10042, ..., 10042, 10042, 9570],\n", " [16384, 10042, 10042, ..., 10042, 10042, 9570],\n", " [16384, 10042, 10042, ..., 10042, 10042, 9570]], dtype=int32)" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "greedy_output[0]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "DeviceArray([16384, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 10042, 10042, 10042, 10042, 10042, 10042, 10042, 10042,\n", " 9570], dtype=int32)" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "greedy_output[0][0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# VGAN Jax" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "import io\n", "\n", "import requests\n", "from PIL import Image\n", "import numpy as np\n", "\n", "import torch\n", "import torchvision.transforms as T\n", "import torchvision.transforms.functional as TF\n", "from torchvision.transforms import InterpolationMode" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "from modeling_flax_vqgan import VQModel" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "def custom_to_pil(x):\n", " x = np.clip(x, 0., 1.)\n", " x = (255*x).astype(np.uint8)\n", " x = Image.fromarray(x)\n", " if not x.mode == \"RGB\":\n", " x = x.convert(\"RGB\")\n", " return x" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Jz032w73nHEf", "outputId": "994d8e85-bff7-480b-8b69-f69dedc15c49", "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n" ] } ], "source": [ "model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "def get_images(indices, model):\n", " indices = indices[:, 1:]\n", " print(indices.shape)\n", " img = model.decode_code(indices)\n", " return img" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(1, 256)\n", "Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAIAAADTED8xAAAtSElEQVR4nO1d6Y4jOXKOyFJ3zwzWXgP2An4Dv/8D+QF8ADvrxczsTFcp/CMzmWRcDDJPqfShu0pi8giScZNS4cevf/3tx28/wjcAJKABBoI7ASEMCEgAAAQAAEhwB0CYgfOD9A4BaHqxVHvhk2NkBZpfU1auvs5bRTqn7GcOEkMDwB1gALgDfcD9HT4Qvt6+f337AkBw/wAkGIaJiREABxhZHgGIgAAw52xBMc7l+GL/F9YjwkWyTmL6USpywRhf3wEGQIK3G+AXgBvcfxre7gQEAG9wJ4Bh4nhEoAEGhDsBIgwA91lSJx1Pmvjh/JOJIAhSoFQM6oRJSDmJOu5KoTG+fCQ7fhqwfUiFcmUS1NWwtghKxgN3YTvVo08uq5kqD2Jgmn8O8A7wFf/4+A6j34MfAIjwls2EAIaxyegOZQPT6DLh/DMrL5ZEEM/oeeEFSPoNAQJakbcUqq14w7Q2ACLQO9Ad7l/hdgP4ABgAhpn1px5nR2jxbUpalkelx4+i5oghLMDPBib90gzmkDXjqtjqp1qfUaJ6z6xnx2JKslXrLUhCwfTyhT6WVTBTMqppoMmrJwQaAEfjcAOCAd5mnwcBhjvcZ84GmmLfRL0VBBclQvcjL9bhro9SOaokzgXZb32vy3na6q5V67cS2UQbaeWqS9AaQEa2HzP2G3mYZneGAG7DXAeBAIjgPpoh4n4cCyqIFiEpplRqOHXuwakF6/T57q06VO2B6TUWgMXjCqZ/QbS1HGAW48k+I1Y34nJU1Y0fxIXgbKdPvYwnncqzWz/mdeBGBDCp/OTxJ7ee8faIez6KJe5ob9TW6Ot4fcgr94vsR63ExDWyNUqwGqtQ1ewdZqlnqYW/nWvXgpuSXNoOU6GSCIhgSLVuOCABEgHNrj5NgewyYen9V9mORJ31HOcgomz9OlKLOEo4SBIYTVRvWHUJZLml8GXnV3cNXdCyCSPy2FLhK8sbz9/SlBTKtTzcgAaEpPAJAHE+85p9MlWXBFwvm6DII9TYsRqQ+XY6TrQq5R0sJZtYy9dKs0PMQ7P+jFz/4qyfze0tuUipM5sIRKCx5hgH3wgIgBCG+7LphHP+NBs170oOzdldUtGxYT47ygrZ66rLq/YktYbqfDNxa4PLnR2Komm0oEnz1QhDt3tbiSvKPbUdHIU9FnORPJEUXtN00gUEcAe4IWJ2wwHnJWEuV04xez2KZrGUpS98ij5q5RXLC3ec745ROshYOVZfh+tjmKaGk5qfi9KdmjocP1MSl7EvzYoebvPYlHqcT3lhdoFSJ6pCV9X9RcCVXJ8WvR4cm9w5P6mKrZgkAtkV639+rQQsKQVv0RlE6nooRqTZIEyHAzcWaNBUCWA6GaiOW6r7uQ+cgumoHO/Dl7zXp+B+EPNYOy3VEWHKVd1Ia4Ols5jblKwJiRdOZw2Q4geFDCxvbwCkTgOLFchluLom468GM6pVsqLH9PQJUh07oXllIltFGlurrapuSc5SYeomsxBsFVcJt5belig53H8dc3cyXFOj7ZyME0ExITzFM9xmxI6khV/HSaTEO8M5SFi/7GONm6/Ip6CA24EtQex38UQdLpLGkd6s5Td3TypivtnoHayZzyhOZHU4KbrcUd/VXWQ5lhq5VPyaHfX4x07U8IaABtsCOOHQfpEk16llNkD4cgttaQF9j9R5ai1lN9dqTmUP1MRDa8PIU2UdrPyGZfjUHXLKzYGVKuR8FkVvUH+CAHAjItTC9CxOzyHdvw1NPNepYg6W0jVCrKKCX265NL5uskasrknVHfDXVlWa3e6WOZZv4/xClgKRXbXQSqlDXMJLtY9pUMttyE91xxW8ZX2g075K3worvy1ynk4oLEbJ7HJrcjcgP+WwrKJ0sZrsieqhOSDxU+2feRkJ0qKCqMNqWjSoU5Yro3erjldjoCQDy1uDNrN9/noAuGX0jBc8qYv7odwSx+IdAC9sYIxjuNi8fv5SZbHAxvuP4krWr8eI5D0sd77q/VdHD07ZaYXygW8cSWyNMZ1CF6SjLUnKTSUqN2SWrXW5+wqmYILB4ma1eIf5W1XTegowNlDVpY60lY8kGV2eyXqYwwY1KPLTKt11txYKAYZR4ZcRBvnNwriEDARirA1AhmCoxAQ7zLulcgg5XIQkB8eskj2ybkwisZS0AMQ7ROXVXHOQn8BBW3p88yQerpagLsiNR/HiLLDFlDxNNcbddU2bZIY1XDEmQ8MupVs85ImNGi9NNdNViNy1IlYplUgBMoiVPnZ6wyQu6iwlw50cMHDlrDk+EoiHpVZzdcRIyeaQc9lcxlY7UVVW0VsRABaBjQUeBoxNbtlbfeLOcgSnSkXvy82LmYl5WMNsljRBunhp41r9SDSxSBX+cCtFqxW5e3PAuNV13gpsXq1e3KjWh1n9V8nuSI8ujWUYR6nTsmb2nLpHlIh4zEFEljgumR2dByGXN95wP7RsKPl82aiw9OfjXVFkypK9SI27l0bVedLf1WhUHbhT/IgjRlrZudQyrM/qDh5gnVoijUpMVA2ZMuhTv6WHVi/yUbdesYYg8ymJn+yRWoKNmx4BCUvGnF454lY0qP2oe0La50gIWq6m28xkRVU+72yC6XPqkcs/xBU36k9mjAKQFs5ZJoKSC6IrmoHtnuTTuBDWBukjMNItK7HeqiWtcDSP2rlTWCEmsMIyA5K/UGVjmy0gl7RqbOMILpSX4aS48LbVHYggX7AgZzc5jrV2lhKFcspHhqlBbEtS4S6R8sjS7pY/q8LUaZbcOLBYuTqY1slUV94GTWth9rZSqKXmzN045sU63BoYxNdAah0ZATkajhGbGq735CNxsj8Km521wLKQ9eCznDWoLNdVaocYtALL3+ztbaQpW/Lq/lV5tZvEDUHiRaRya514YROC6x/spBo7xfuMD6qWs1hujQ+ht03KNNfxaquUfB9yAvlLTinN35mVavLKrYYw9ZL/kw0v6I68sBrLbiucZDTxP2pLS7Von4MsksEOmQ8rbRNNaPA32IZ2LDwgK/fCeWBuSaRBs93wLaAiAJkvNP4qwgyDHXlEJW0eCg8xFwkWylD54oUnxWIBwnyd+yDhAexixwIQrwsA9esZBAuvE2Z8nzpnYSaW/0C8wBYN8cJDoc0ClH+qoiIFbp/Lye/g9KRF6FYIpXtm0vqo+t7qzhnyhaeAqmSd2swBqSQqI2clN6jIk/kBsVk80hzyj84sR5Iqf4PB4mqKziHuhcfHxDL5H9ryPaJSL+t5VCepY8UA1ojM58kTSXr+nCyiXFz28OmF/UGzZz9+ef8BHq8bA5h1y3c1R6Xy2WImPIdM+4UHAO6e+yg6H9TSmZTlpwrTaiwP9ZnITOsr3flCLyzHmZeq+VDvqxGdZulnUt6CCipb5ISaf1/serDo2slcbWIIH96a0mQHgrNgDKaqcpO/vBigQ/dbFcuv2i1infP2Sppayv4B8/eK93sJ7CbcD+VEHuw0hQoPorWpXu4kcvK/BNMJQ+6WYgSwbrSetzPyOI6xe0Fa1Ru8BpasoiaxDyMGcv0Z+jZCuNkE2V2g+upYuR1jaRk/obIpU+x/MAiyuyKWDxagSq2i8d4RoHwxk+7RGOUxbALVeLJjAtmCTAoNY1+PvjRSR41lMJ2mh0XAyyCSM9SUbjtQvNgJOXuTLDKGZ9rn4ibNJG81t0xKiiJBcBCta4mZuqKyvHXok9DHPXnigOlrv39ZgXOwmlsLEMOGuIpUtMTBnSNg5BxghBNG+BWaOkT37eoRdg25WfTpEMN8JMshqVbwHwWnajmDzn5Wt3pDF2t3TahbAOmT+P5PB5Lek1a5W6jKnpyRVy6rdcfE0Vgd67SNY5i6UPfUHd15ZJkOOdqOKrzDQBBnN8MCSJ8EaoO1kELFL3voXpCm7KncHgfVqUhlr8a+rFqrXmxbCb93FD9BkB4e2vLW5NxXgdjv7YHQfhVibbU0MGWN/JBUGyHCTFLfWZobS96ITMXZbCYYB8GfXv420LCuzUjxmoyKa7Gv1+oJgDNyNWTzUY3vGsmJ1GSaWO57Jdff59iu2X8SP3NKWm0K6we1QqMuuAOq7oJTcg4sd6NqAfQVXnkwNHtvfXmuuO/nq+FQP/m29znyKk3WKNKagOBEtcOqxUGjptEkf06yGvJqe0ORvXadyxeycg4gQxtZAbXXEWhaJ9JB64qbtFORaCuq5ROXQbmabWRrxVP0Lk1Be2iVS84OSp1fQXBMhWyjm9zktPKI1WewlWqO+IzqB2G+UlFfdyHYQV9uhDfJGL/4Zm2pa6u77qdufea2DkNkWxKFlgp3UlRNWKPdDIp6+siG5uSso2pCVQAwWUC5H9utkQN1ZGgRmKItc/+xEIYoNUytSeKqpLA+1WokeMeyRYyGDgtQJUwV3ZhWb90yc9B2LNSR0V9zDLCappViYmU7ojWdANl6CoYIQuNqpCEwJnJs0MRwudGwvDIqX0SGaEI15NgB+mgtNCjTbbgLVA0JoEWVnoGF9lzrR2jecEaOM2MVqmRYLlC8gvPI2mW13NcdZcVmiXMatGdieixAW69VlVPui793cmEje21xzvKIRBsIi27cAEUgyaXAGsoww/L7g4UqYU3lENr6cK0ZNrXLVoa70ys2C4DcsEaoIRGbCNo8bSkmKDk5b1s0UR3u+DqqNftEQurDiAMG7hJY1XzD0orVWqBNDLSqRRC8ZlJrLUC7mpH7QvaSSnZ1tlLthJdg9i/fB4zta5DKIILapOpzshL2D9wlzvupVlBfgNiYqv8WRMTrhuiC67WqX4uyPPZrCGUWVGcMvm5gHCufyrdmb8xeRLZH3YnEOpLbNnSWLEhHX65CxMpVg1ppka2AJLbxobWpVlpv0FIQ3BoOFTXcljmPrfFL49AJlqYnz+WZzWr9Btuuh7UTVlSav908OeEMuu1SEH+3hluUJVSyQGLIZpRkJlWLykO9kT8o66FOIWUcP5dgXpJ9v9022EMe1vS5Bz05N6lBmGOsg2BGBnlZT3+UKT5QBaCu80WvVXfELCuGrSJiEnkdNuGsI07PAVr8uSFj+gsuKVOF1SB4mVRVLW+BDs9ZhnycZiEWyhAX3KorQA15R+T63vd/TlpbyxMsMFS+wTBDUxAcznDsCyMY5YnRF/c78HWSFQys93/iiG2fbpBu8gv/O5JxUA9PsFQZR0BGvfLhi/V9tDrD+QvNg2d1j2MG0wKs7zg2iW5O63CKKLWEzEa/NP1OqCY33HZ9IPGzE6sEoHEG3Znx1hkizOyeJ+lTXy8x2BbBBOgaFeg+aWMqRsYQpGsjplEPT5w6/YkEJm0yInlJwinoWHNDwDrVPxOXqAVotG4qWKa/emLYbS6mdG9e9MJK+Oa7a6vW8m7j6KiOOsjWmxxbOBQEEDm4tBQA5s9ean5DVFfyyJA2P8Fv2uJOCyBbdlSI1SXhBckK3tPj8wufAZtwf66YdoLds5732+bzABtE4w1wQh9SXr2wP3o9+5X3GqKntA6G1uaS77bWtexAt3bAMEFx/V84EvGVLy8LrUkObbDbw9xXFNbJX1dTB/n06vmil7t/BQTXP/mo61i4OGvu7ipqATZir3g31WqjvicAovlP0r/wcFixa8G7w/rjVNhsAVag59iibEK5rpep/RceCFvs18JRTm9+FiX6iTALjdOIW6rKLUMqa7y4/xFB7HdzaxIcFeoq55x0EtyZP2mRGys/6ZzSKodiwYP3Fx4C8053b2Y9R2J1PTYbagakPv4O1cVnV7LXL1//GRHaVY17eqJf1QU6BkHuzbW8Mr1gZvSFB8GabNBa3X2wAERQ+fRFcvpfMvAsWOPMovu2jmHl+FtA3tpk09AD3bPJfuEEiE1fmwscAIB9h8+emrX7RsmL258bJ5jzOQgW2I3X2OdSWtu+8MQ4TcEpArAbr/m3OK2aVskLz4Qo023OnMpViCvx2kvxfwqsYLm1HKJchdiN6Viw65xoKZ7SlcTyhY2xguXW8oXyvUC7sVqezMm/qyF/bZIQ+ZDYCw8K6t/Y+jVI//Ewfy/Qkc4GO96Sb81mL5foWdErA2uvKacg+Bjd6ng7ITJeFuApEddrggHWXoQfzmYpNr5+ZfrTfNjlc8xSgMRhVAey9g3LOJzkVFjX3ZRD38/EFJ/Xxeu4Jjm3K+4zo6jl93yFu0AehdYV6mfEp7FzOvrmXg9h/csFDX8mdVPUZ0tqNvSZURXztAzPphCk2rYgEiFUlj/SZbh6+PJ0fL/y5hauj/meFZUvybExWI13RmjMp9tqdvH96ebXC+q/CuFlESOdnhsDPJ2Kr+PF9ArWnQQ3hLwSaz8UvwIVUrf53qOHgRoBqwugfoT6M+ORDsJyeCInd/XZNafl3Fv78nKlRvB1Q4C2c4BtyWlB9VT4M8O3Bms/BnU1HDyBnM/OygJVjPvnFgX11iDU7lA9LuTfqWtsn72OrEhe5wanZYHaNu85tjpDxMVjV2CdRXvaI4IaCADGP3uehcP1RUg1LmUBHg4bzoI0jR69J2vUUft8bGiX4Zy3OnJFcoWrEA+KzW9nb3XIlZj+s1kDH6h+sdpLALohP6JT+UxPDRFtjeKF39uznRxrk1lxmfq8u0A6SGOrC4MZgaadsBx6Z+r5XfFqtc8DylW7O/lizcdXwzU/ZnVBkgSUm9vikZPN9GXcOhOouvWPsHIlWih2UgUT3GVVLkpEPw9w2Lo6bHU24kSpH/9v8o66F+CSK7cLdO+uZgE4lA/Fq/g86+oi7rSol7Q6tH4THtHjbyI459bFHmIoftKfD4gh5t51XS9/rO/nVSySO6Zi9c/+rRzlWlitWzGcKiZZIWoBdkV8Dw/fbcn6Ulod7dMnAzmXOyKH2QtJ26OAoOUvXWvL0TZrLM3xgLFPIx+5tM5Yx+4w0yzlaSNP41jxru+WOIwebCgHfVAxyH61oU3LUKk2rvD16Auuas4tXnRyoMzpV70Xv/MmqKOzkuvss4Lxe4HaFwLZq2oPD3AQdhkxkFyrpnfS21RYvbEje9sQjxgKB4FiZYlZj1Ypv4QASKIfYQMljaQ92jA88OEYmQdA0BOPnAQ3ycAlBEDa70tb6wmRUCXnyDyYXsOmcQvT0fNpCH41olaJH2/5i8tyGpcQgEdDh4Sy3NEaVrO2+MJHiNthKwOXlukSAvBom7bq9tVGPTwf+nibq4PqerFhzvpATAF5tEPli0eGGhi09hBp69dZ38Nl0XydrTgH2JycNei4NHN5RDxSv/nKgOFR0EFqEVAFl0k5B7gaLq+IWg8u0TZme8/18mu5Cj3irZwDXEdLPNd2pYsS7O111vsJMK1n7jZH2iSc9dWIE57R50mI78jeqK7rgy78srbdLKT8lcjjcQUeaYHjl7PTKKnvr3lWdUGSdBB/10y5uA0KcOL81au9D6qOxEVDuAy7X4GGbYDKu+bZ5Q3O+gsxjw5V90juPwwPqzQaISzA2pjqilmga4PKTJrD5f5l6by8aQvVm54vPTai+T7FFQXgIn6DAedCqFqNXAbtMOLqJweeAXRIikw5Cb4arm3O1Vs9KXhR706fxaCO4F3RaKz/Q5EduKIAXDgUZtk2LIlVb0E3Zai3hTPi5bh/E0T+0gwT/eGCBzMXJElA3nOGGuFHTuvy67cC7tzqE+cnwRd0uK9GTwbVZc8DYhRRMmRP4RDWfFTuj9C9njeo3InT/1K8giuRJGlRt0B+6oVK7k8vLuzfnYwQb28Yu0yX4U5Rt5EPU10DHcuDtW3aNQB93FsPBKuJ67jzfU4QfGEnZyWkjyQvwx3D/eSScUFY6YQGROSHB8F9I+2Ey2qnETZ5zjmX6h3tRA6KCo+QUJiwDZ2tonMtAbgeppPa2ke21WW3Tnk30cErD4+fFpR+xHChc4BL7dJMDMJimwnK76WpMTJT9pv7Hn3xSY7rXNjeBvOKR2eEp1iA6uWBE6HRpn4jMSu3gNm/bYGae0PKK73CpbSNhEee49XVZrWos4QTBMA5nT8XyWUpKfGu8ZxO8wjpoQmimRBuGIqcAO1SdAQ80USXigHOtQDhAJer85P4SFJlATN2R1F+BbsrUaGKnHcB6LdBT1cIpxMAAEJBSKIUMg+nXMlpajSoN/Ouj0NJXQTg9BU6nQAAiFGxlQx05ChJiCi436t8jUUNYXTQQwTbLlDbfPEifyAj4Urb5a/LEgqnf+FLWjJy7TE7rMJj5fw1qF98q0BUc9a2NiTADTF1+8irtw3YBZ7WawVEWp5h7i1/bXnwZlbHP0/ALA4uc1aAc+q2ekPjbGxAWgcT3+ZFuQT3n03ExCQ5PzViyjMYpjxxoHpJAQSX1nliTHs7pz/zRPDa3A+u+thnPAC42ofiTyQGl98beIWG/Pg3SZ066hAwf4Yw4vtEHYyzEfLjNlSUy0nwFTTE2RZgxDbeYLaeuXOyeJwdHW6CRz/+ddZBfeQzdvUqxDV48lBsxmnqufJsZOTl0MIXyqQwT3qm+lQm+APUGMcBD4dtb9UmAfjsQfCBk7e8/HwLcuHJ+Z41jFON6pCXROgUbKtZXOgk+DLwT1X9CkE0iRvLt67ChbnfSoXtiwvdBj0RpL40K26yQ92ddDTE3F5cVQaSU3cclNug57pBZ+9N2oMr35NpxXRpjx4jERSycltNhDIB+NQBAAAYYdVWPs+ZmEX50Cz7CgRPP0IQiQSOJABXWZnz6HAOp05E9+g833qVDfawnxY2Z3+tvxBzFsTyXIdbVoUKp3zZ4GpsyY+OI4spBrjmIh1MVW24ay6Sj4NpXs+4eDzFl7MAJxKjrb5HzoXDZJTMdKldtnHcoo4LsqRB5XodL4646iLaBgQIqAdViEYN4+hX6XSLGS5ePrEio/acCNp8Yw/dr9bVszh5LDT/UPYx3K8disprvddBJZGiPUJNnhFXXblrDXApo/yqRqvlFuAmmG6DbnC62Akr53h1tC6XiERTarVpvrxyS+MDUkGtVzPMLoLYimn5QZhwhPZbMjaFZZPOkoPguB3koTY7nMpzeVBlA3FphfF0vqHaNld3G56OR2EpD1lYJYtfhWAOE+6bmpWdE9nP9saaEau3DNCYU+6WpPvSuKgewuWAuln05oAK56yoT2MfcNy1I1Ouhlvf41VWvxVidwtg3eG+LBSpjdavL6awAq3Ht4ven/vB1M9uq4pQfmfeAahlLKw6HOdfhrtOZBY2O6OmKZyZ0g8gyC70+3bZSiiJEiLNOUzqHU29mPrZa5E3jEp7Sewn4WQBmLdtmfspzk9ODxgEZHvDP18rspBosb7oaukBi9dEnGvN0GiWvXTXbTNGb709enzqfD0qArDnFcLcMb0Wcl6EUiYlT1AmNt2iy+xAZk8qmftMYjf+2Lszl32uVZ8jPsuH4o3Bj8kCoSy6CDD7OYNkhezFxL2thzVln4iT9x/Klu7KOGS83Tr70zYJUZsvVJCwShC8rUYxwkGT7tONg0gKT8UkCmn6GwKJK1LQGdoII6nXsABY8x434VRLGLKSVeOsI5LyV8G1q3414jYSXgsHaf5XeLqXMghy72d+z/98Rp7OJ9lqb7h52A26UpOP+WKsSIZuuVQ1v2aBeRt0/51LJn4p2fPYYQNkVlYNCpY4fvw9Ju/dKRFt8zVE9YUj8aIK5lVooxQG+zyLrY8cocd0gbadjKE5uCN0PPszZ4b9y4HKu3EKS6I9fxxRQhvOt7pfOcVxhD3SYvtOUmPKOUCVkuPuAok40s+AHwprERx5SAXlNNrcHlzkpwl8hHgP2JityvPCtvAsxYZB25vF+vs306D7J6UW54HmowA24gFnAh1DqOn2+SijmZu7FnnVzqxZVa2hf6qR3pJdfz30OeXSa8H8btDNT1VUzApjWR2ZYDkAQWPkWImDjZhrmngdiQ5arTSGNo50RZJIVEeO7jnxd53rz4PgI7eR2O8247x2XEvSIhTQ0smY+lATgtHeujB1j/ZJZUpIUbnE60ctB6mWxFNDa6jrbLvEABF7sRKSz0751Db6+korR01NjIofDf2TSjYXa1rWDZ376oFQvhlZc0uNEPAH8ZxkHyWpoKf/W2OjVW65lLH83OQwhydXh4yt1ZL8rXhE2bYv88Ppg2CLFFhX2coOF12Uyw9mP2G+IJ2KpcdddlgM2+ErYLlibsUC5T2a+LC2t7UDWi/DbcalaEz0gMA3h8XxKEpkw1Qx14uJ0bG4Eoc+D+EsNtqj9HO57oYK7bzzPDJJItTHVpp3YC2MOsL23LxVkoZ/K8RhHolYTbV8d0j1prqCqhuDCkvxz8ur5h8Bku8+15HMWR0wElBSOltcv7NysmI47/GBCDHRSN5x3w3K0mDZZuImp6FBGiRnWxV8krotVZ5ec1nEe+gapbyHaY2tGN3qKjyuERnxSKB1qeqy0710CSNNrV+P3i/VdpBNKJTb5rB2wB9RFZj0z/fpd0XVz8jXU11Yw46YcmGH8jLaX34irxPEBgIT7KLyofjNofVfbNAeBFhZmsy9jvYDbqvzjP5CQFWPuLrf9K/sbk1Oa1cH2CswysjBLlq/GrF5UhEfI89+7KFE1Qn6utzBwVGKNv4qEuIxhBxYy37qvXXZ86084YaR9/0LMQ5vzY+qrvCWxDAkXb65i7qWSSuDn2NpcHFWFfsA2YauGKJvdn5k50GmQX1+aOMW1fEo0uP8k6wrvzKtQgyVE6Bi55bCvD6ICmVdzPWWlsdMxm2rxF0+9MHIPdU0r4IlZhnozCzu8clmH5XvBRLocYFQvNY4j+UN9oJ6+JADDcHQuoHc3aTJl8OsnzWBoINtF4mlf+N0qnkN1sPpYdEI02e7MRI3/0gKW4y8d9IVxo4I7katGom9Vx05QqWJ7CpOl0PJGrC5VPtkNKuW1aoc6b+pWrWX3ALzAQBgaGS+bQTaSL1tN8C+yPfe8lnVjd8E1JvBYgkIlrWMQ04Zs3LUCmVlj9BItUAPoV6O/l4gg6BCCeUu08MCA9q9T8n1cQZq7K4WyretSTLsyq6xwTqcMe2NpvvzCqd9MRY576yiB0N1/w62do5iUcM0WCGfq6ZGejqhE1ZeYgS7CyRNmNN2LVmP4O08JXJfBQ2OX7k/608qvB5kuNU91gDF/S21oxejPg38BPdhY+1FRFPzsfIgCn269xKG/pOMFxqQJWx3H2iv5J7GglNZ03gpCxTof1NYVKpZtKcGGbzYnZ8J4hj3c+UU1gTQDWi6CrHjqn1KN8vKonZkOa+MjcW410XRn1gCwBPYG26FGpXLs6UXPhs2OqaM9iRjgHP0Dbsr8cJROCYMgK50fh8r0vS/ZWqKBRCD+yd5azO+qZfazbMXtsWuy0ylXW8ipYOwtrA+lzNFAEipuRfUc4eXHXhkJL5vcGlnQannQaouPpq1insGqYZyF6hRw7/Y9QUGzFRyk/9zXBiYxhgcMtv1//oD8BceFGtu141t6jLjs8d4eyI49mIBqpcu7B6ZMVnLvfnR/OuixMNCXrLo62RNywYJ7LgMR6WNy8s3xl5niS9sj7Wpkdl3z21IUyednBI9CNMub6onOBvjZQc+CcqPATRbj/LDxA3pV08AAjLFxnjp6xfWoJLNdJ61uv4Jg/3I6US1d83KWkxX78HSBi/j8EyI7KaTA9UesU8aohruDnPPFREyxibxswGCsxs+iPTi/mdE966yP7PSMEQ0CD7DuVHGfB2WPSU0PYh2Bb95GwZHdLa6dbQJ0hnJAZfZXzgJ5sbGdjxyDsCfD/nRcTs7r2fFly/zeWHnehrUf1nF/COF1p+w974WJTdFtat9VmRcRfSuyEvrPx/EnpostoWa1APdoW9UNFvtotFfB8PPh5pKjXcS6sDK86jnACguJQWDkHyUXT4H9BKDJ4C7ifzhih2vdDW+9Q7CqmPPQpy+A3BHPwWFEL+uDD0o4lnzwO23pv0vToutD8Wr8DKSWFgA+XxLHDfSC5ui5isn1jzsiyQmBM8BQlE5AlChpmXWXjZlj+rzd06FnYH7UD8gfDTgSZ9BpWwxxQ5ybXZM/n3swhQAFD8h47Pe8fMVkK9hJcv5NyYssv2xq7yS7yvz0JxWDp0quu+6+HVYfSkbKxmNqSStt9YRejhE3frxb4zf2EfF7PHQr8ksWrn91Rbq6yo31tci4ilZYztp3eq+qq5aH46M/jd3LLGiLiO5R+lTBK2EO8yM5e8DrPxAVtYcoWBMawednbXY2vsEgtodszLqUyjrpLcRPUN2TRLjqm6A1QMrDIaMwU2kWGV1xVTKDw7D4jP1O4HcAmSF/d3JLmj57ahUq7MGY6duFWNrEiWyk6abfUkjqb6dZA4pFczCov1I1pH6ILh/tkOiVLNKujuxiiOGolHkLNdj2WT5vUCLQSh+x6Bxf3ChNkbATyvgiERkCMzeolaYykmwL5ZrxKQISmFmP9m/R0A3pQQNQl7UKje3cKgWFwjLx1u5gONvx1Uosd6y6WSQVqKqUlXtWe5TK7lSHqo1H4St4+je4o5W01iOKbtldUk7VQ46wxWoilDjP8dNWiUb8m+fSYXqNufDn2PXTgCbup9EdZzzyvaJZ3rluI9neR+sh5t4VDic2ypky6A3toZsoTcQzrzTarVPwPEMMiZy1lxWzvfIXD+tlNSH8Z0qRyxcTsyqOAdhFBmpA35g4sJxVVBUWEtSR50XBFamWAoXIP53k0oL4FEVOQlmAds2SpcNAO7yUFFRNlW73J7OFzLI0IlEeZPPo/aZl2LVAiMAAWKpu0mxPMtAQ15W1tBdvVMUYSDLQbaZfunuzSFVlpWp0hsbzyzfqclhJtGX1+4GAGHLspCBQLR8+mbJT+2tda3wKpxT0ZoW2gtqk7BCwHhYEq8jyTZZJNZbUxRDYmXUnvXy9uiueE9zJyFrMlXmsWvEYix/JbK67YzdAYCAKNO9p/gcKwYl7QUVc+VQ80AypM8fgegtQnJaUed8Qk3C+L2lPtmOya5IzKINknR72vwJI4vchQAAxu254Nqtpsq39E7bK3X/RguASUbzzTheBpgZBoM1SviqQX2K2iMrnvcfpVFSIbP1mD7Aqn3hK9r80LT8UgaqU9OhRgPxcM13llqoWJCyQDOj6qAkAJQRjdkGwDQfGj89LFaIyv3mThscKxJMA9ekX1/eef/UhUMU3WIpeKICzjzNHuU0LpTMC7ooszjlWaeSxrw/zB9QfbkqjCidpDX+T05YGIsTDsWOWM7VAp4FUn1MVLSUeJk1yc1CUmkHRAiSmDUNjeZKMk66PuE+VcPST/ncvOD47IhTkQRGfNdwaxvlZHXRw/VtUgTV+JYJAKr+DJUywLYrezvqOUpik5bZt0TlaBfHSuY8qM/Z4HDbkpfLUcngxU2h9MocibzQJsPTqGRUI9HhLZcSKoP3oCyKJojaSD5GAUsbk03gUQTjWpD8xEqqMcoO3G+ybIvN9JqO/EOLp4ry64DYHG+AOLIsLgI39gLA00mTYYksjawTaIX59pB8aZa80IZ9VHtkNFRLu1DwQGa4Rq8PUznz6u9LwhQI4IbwcYfhAwaaU/sDwFDyOrtJZqt2Fg7l8dUSaJW2uCCuZvWUmT8jZFTZ9LSPtVgwvKGMqPu1Vf9K5ziJQe7O5N57+iZdRIDb+/udvsAdvhO8Idw/AL8CEsAbAMBAcC850te+ij0qy5OvpdBO9iNjtmzDOgVjN2e3G3GXU3naO53J7Mfv20Q6dGAlqvrGSnnPvOd0CYK4eqX08/brrz/Dn/8F4ctXQIJhALjP/94A3mAAuLM/vyGvFutE9c6mlr60CqtBXUOnmzpah/psazhpNe/n2tKUxPZRVE2nuhGMBnNcnKPN4ZeP39/gh6/w5Q2Gb3O9DwACuAMQwDD/JUnXlqUgYhvIvtS3LRESin+BDszx463Y+kga1CZWBfmoe0abgJHBSrwGgYepw5zxSKvAe8iIQBQ0paQwAtw+/vj7dwAEuAMAwABwm19/zMmcAUbDoBJP4oUzvajpkPVyz5QqnlIQ6vqmEtVByxuy8riaV/VWsEN/CMYKG5od1AjLdXDU83LrSYIV5o4YmfnRdADFSnOWvX376U8Ew/f5Xuj7PJsPgA+Ar3PtAYb7IgOjF7Sk+dNvlaKMXhScpAfD/lpureVURdvRNtjKVNVpt7Q8fQdJlSbZZimikucDkfcmVGonkHGz4b5Y3oA1br56OCf6CQBwFonkAt3+9OOPvwD8CvAV4PsU+wIB/AjwDgAA78V3qKeoYhk7FwPLqOfTFRgPidPDp0/ymEgBaK5T9hxOeymKdiNi1HTIBMwfLjdDbq3pTJZVnJvjHQjGIPj3t69/ALwD/DH5/fdvMADAd4AbwDvAlzkgnnX1EkxjSQ8Zmts2+ZT92oPv8+jfrwOi2ueVwy50iMmYsZnyNrMM1Dk8eyC3LJksmjeeebM0WwCYYoCfhm8E8DPQV0AE+A2GfwDcAb4AfAf4NtsB5AOPfbGSumMbRs6XOZjXVPV0I1YlHsY8J+QSg7a+NaUbhN4NU4LVIMmqgJOfw+ompkmaejokHv7nr//1O8Bv8NuvAB8AAO/fAWD+vpQ3Zf64DMTGjUw0itwC5/8kAaiOXuscWxqu9HSvDnU51qyv0XFDN1SrrXH/cgcnq4bpEQAMQAiIMADgKCe3f/3hT78D/AQ/0eTt3Gjm+3s2GIXUZOFLGPX207J8uVjawlpNEk+0+osMVOfvQPpbfiIj69Nf1VSz6E/7OOxUM5K1sZIytk+7ldbTR6+OJppMEpHMC8F9vvA23OF+A7h9G375PwACGgC/A3yZ4+BvAH8AfJ3dIWEYdQrswuDTbsjkErdQqV7cbbKmF+Eep3PUV5DTVUpIfUCaq2UOYpGpYzqM7WU58hTjseY58YEVONdmImSuDk4q/20mi0Y+v3254z8D/AT48zy9rwA/AgDAN4CP5U9pf5RcBOktOivpwWPCNRym9swcOaNzZyIFRWiUq8BM6gKjm81Dg3EKiwvx4SVdBERVIvlbSVLmoys5eI1StY9WnzYPDRZXaNYdxXEYAbwBfgACwA3ePu4A3wD+AvAd4AeAN4APgC8Av8/WAAFGWSAA9mGL7Bpz6JZoDJStisWO2a8ZKBhd1omMvlF58Zi0QiinxxidtPrt2Mvn9H3i0RzZn01j3cg+LLLlCmHprQMsiXUYH82mbAD4IKA3GN6n4124/UY/fQD8Av/7/f3f4AZ/B/oGCPDHz/D1O/z6T/DtBvcv8EaA75NZZEfC91zgAv7FtZCdkpxrr9dD1QYrPbX1deLwIjHfxyCuR9Kfpxh1NM3uECDgHd4+4GMAeiccEG4//+d//+U//v3Pv3zHb3/72+9/fPvhh/sbfvz6Tl//8eXXjx//9NP7HwBfBrrDgISICESjIMAcV2QTCHqrp4P4u/z7kQr9y4wepVqFmpmL5hcHw+JEy6SwkCB5SjGOJpjOU+t/YK5BRNjyLbTOHDfFJSPjpZQAldWn0GXetjsQIiAMBDQQwv2dAD8A8OPtDd7ubx/w/1lcuBBroJa/AAAAAElFTkSuQmCC\n", "text/plain": [ "<PIL.Image.Image image mode=RGB size=256x256 at 0x7FA20677A400>" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "custom_to_pil(np.asarray(get_images(jnp.expand_dims(greedy_output[0][0],0), model)[0]))" ] } ], "metadata": { "accelerator": "TPU", "colab": { "collapsed_sections": [], "machine_shape": "hm", "name": "CustomBARTv4b-model-generate.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" } }, "nbformat": 4, "nbformat_minor": 1 }