# It expects you to have the train and validation `.tsv` file downloaded in the current directory # Head around to this link to download the `.tsv` files # https://ai.google.com/research/ConceptualCaptions/download ''' This script was adapted from https://github.com/igorbrigadir/DownloadConceptualCaptions Few changes were made post that (excluding the post processing of data). We'll have only csv file with image url and captions written in different languages but not images as we do not own any of the images in the dataset and hence cannot legally provide them to you. ''' import pandas as pd import numpy as np import requests import zlib import os import shelve import magic from multiprocessing import Pool from tqdm import tqdm headers = { 'User-Agent':'Googlebot-Image/1.0', # Pretend to be googlebot 'X-Forwarded-For': '64.18.15.200' } def _df_split_apply(tup_arg): split_ind, subset, func = tup_arg r = subset.apply(func, axis=1) return (split_ind, r) def df_multiprocess(df, processes, chunk_size, func, dataset_name): print("Generating parts...") with shelve.open('%s_%s_%s_results.tmp' % (dataset_name, func.__name__, chunk_size)) as results: pbar = tqdm(total=len(df), position=0) # Resume: finished_chunks = set([int(k) for k in results.keys()]) pbar.desc = "Resuming" for k in results.keys(): pbar.update(len(results[str(k)][1])) pool_data = ((index, df[i:i + chunk_size], func) for index, i in enumerate(range(0, len(df), chunk_size)) if index not in finished_chunks) print(int(len(df) / chunk_size), "parts.", chunk_size, "per part.", "Using", processes, "processes") pbar.desc = "Downloading" with Pool(processes) as pool: for i, result in enumerate(pool.imap_unordered(_df_split_apply, pool_data, 2)): results[str(result[0])] = result pbar.update(len(result[1])) pbar.close() print("Finished Downloading.") return # Unique name based on url def _file_name(row): return "%s/%s_%s" % (row['folder'], row.name, (zlib.crc32(row['url'].encode('utf-8')) & 0xffffffff)) # For checking mimetypes separately without download def check_mimetype(row): if os.path.isfile(str(row['file'])): row['mimetype'] = magic.from_file(row['file'], mime=True) row['size'] = os.stat(row['file']).st_size return row # Don't download image, just check with a HEAD request, can't resume. # Can use this instead of download_image to get HTTP status codes. def check_download(row): fname = _file_name(row) try: # not all sites will support HEAD response = requests.head(row['url'], stream=False, timeout=5, allow_redirects=True, headers=headers) row['status'] = response.status_code row['headers'] = dict(response.headers) except: # log errors later, set error as 408 timeout row['status'] = 408 return row if response.ok: row['file'] = fname return row def download_image(row): fname = _file_name(row) # Skip Already downloaded, retry others later if os.path.isfile(fname): row['status'] = 200 row['file'] = fname row['mimetype'] = magic.from_file(row['file'], mime=True) row['size'] = os.stat(row['file']).st_size return row try: # use smaller timeout to skip errors, but can result in failed downloads response = requests.get(row['url'], stream=False, timeout=10, allow_redirects=True, headers=headers) row['status'] = response.status_code #row['headers'] = dict(response.headers) except Exception as e: # log errors later, set error as 408 timeout row['status'] = 408 return row if response.ok: try: with open(fname, 'wb') as out_file: # some sites respond with gzip transport encoding response.raw.decode_content = True out_file.write(response.content) row['mimetype'] = magic.from_file(fname, mime=True) row['size'] = os.stat(fname).st_size except: # This is if it times out during a download or decode row['status'] = 408 return row row['file'] = fname return row def open_tsv(fname, folder): print("Opening %s Data File..." % fname) df = pd.read_csv(fname, sep='\t', names=["caption","url"], usecols=range(1,2)) df['folder'] = folder print("Processing", len(df), " Images:") return df def df_from_shelve(chunk_size, func, dataset_name): print("Generating Dataframe from results...") with shelve.open('%s_%s_%s_results.tmp' % (dataset_name, func.__name__, chunk_size)) as results: keylist = sorted([int(k) for k in results.keys()]) df = pd.concat([results[str(k)][1] for k in keylist], sort=True) return df # number of processes in the pool can be larger than cores num_processes = 256 # chunk_size is how many images per chunk per process - changing this resets progress when restarting. images_per_part = 200 ''' A bunch of them will fail to download, and return web pages instead. These will need to be cleaned up later. See downloaded_validation_report.tsv after it downloads for HTTP errors. Around 10-11% of images are gone, based on validation set results. Setting the user agent could fix some errors too maybe - not sure if any requests are rejected by sites based on this. ''' data_name = "validation" df = open_tsv("Validation_GCC-1.1.0-Validation.tsv", data_name) df_multiprocess(df=df, processes=num_processes, chunk_size=images_per_part, func=download_image, dataset_name=data_name) df = df_from_shelve(chunk_size=images_per_part, func=download_image, dataset_name=data_name) df.to_csv("downloaded_%s_report.tsv.gz" % data_name, compression='gzip', sep='\t', header=False, index=False) print("Saved.") data_name = "training" df = open_tsv("Train-GCC-training.tsv",data_name) df_multiprocess(df=df, processes=num_processes, chunk_size=images_per_part, func=download_image, dataset_name=data_name) df = df_from_shelve(chunk_size=images_per_part, func=download_image, dataset_name=data_name) df.to_csv("downloaded_%s_report.tsv.gz" % data_name, compression='gzip', sep='\t', header=False, index=False) print("Saved.")