import pandas as pd import gradio as gr from pathlib import Path import plotly.express as px import numpy as np import torch from chronos import ChronosPipeline from datetime import datetime import matplotlib.pyplot as plt import matplotlib.ticker as ticker def filter_data(start, end, df_state, select_product_column, date_column, target_column): if not date_column: raise gr.Error("Please select a Date column") if not target_column: raise gr.Error("Please select a target column") start_datetime = pd.to_datetime(datetime.utcfromtimestamp(start)) end_datetime = pd.to_datetime(datetime.utcfromtimestamp(end)) original_date_column = None original_target_column = None column_mapping = { ' '.join([word.capitalize() for word in col.split('_')]): col for col in df_state.columns } if date_column in column_mapping: original_date_column = column_mapping[date_column] if target_column in column_mapping: original_target_column = column_mapping[target_column] df_state[original_date_column] = pd.to_datetime(df_state[original_date_column]) filtered_df = df_state[(df_state[original_date_column] >= start_datetime) & (df_state[original_date_column] <= end_datetime)] filtered_df = filtered_df.groupby(original_date_column)[original_target_column].sum().reset_index() filtered_df = filtered_df.sort_values(by=original_date_column) fig = px.line(filtered_df, x=original_date_column, y=original_target_column, title="Historical Sales Data") return [filtered_df, fig] def upload_file(filepath): name = Path(filepath).name df = pd.read_csv(filepath.name) datetime_columns = [] numeric_columns = [] for col in df.columns: try: if all(isinstance(float(x), float) for x in df[col].head(3)): numeric_columns.append(col) except ValueError: continue for col in df.columns: if df[col].dtype == 'object': try: df[col] = pd.to_datetime(df[col]) except: pass if df[col].dtype == 'datetime64[ns]': datetime_columns.append(col) datetime_columns = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), datetime_columns)) columns = df.columns.tolist() transformed_columns = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), columns)) target_col = list(map(lambda x: ' '.join([word.capitalize() for word in x.split('_')]), numeric_columns)) transformed_columns.insert(0, "") data_columns = gr.Dropdown(choices=transformed_columns, value=None) date_columns = gr.Dropdown(choices=datetime_columns, value=None) target_columns = gr.Dropdown(choices=target_col, value=None) return [df, data_columns, date_columns, target_columns] def download_file(): return [gr.UploadButton(visible=True), gr.DownloadButton(visible=False)] def set_products(selected_column, df_state): column_mapping = { ' '.join([word.capitalize() for word in col.split('_')]): col for col in df_state.columns } if selected_column in column_mapping: original_column = column_mapping[selected_column] unique_values = df_state[original_column].dropna().unique().tolist() return unique_values return [] def set_dates(selected_column, df_state): column_mapping = { ' '.join([word.capitalize() for word in col.split('_')]): col for col in df_state.columns } if selected_column in column_mapping: original_column = column_mapping[selected_column] min_date = df_state[original_column].min() max_date = df_state[original_column].max() return min_date, max_date return None, None def forecast_chronos_data(df_state, date_column, target_column, select_period, forecasting_type): if not date_column: raise gr.Error("Please select a Date column") if not target_column: raise gr.Error("Please select a target column") original_date_column = None original_target_column = None column_mapping = { ' '.join([word.capitalize() for word in col.split('_')]): col for col in df_state.columns } if date_column in column_mapping: original_date_column = column_mapping[date_column] if target_column in column_mapping: original_target_column = column_mapping[target_column] df_forecast = pd.DataFrame() df_forecast['date'] = df_state[original_date_column] df_forecast['month'] = df_forecast['date'].dt.month df_forecast['year'] = df_forecast['date'].dt.year df_forecast['sold_qty'] = df_state[original_target_column] monthly_sales = df_forecast.groupby(['year', 'month'])['sold_qty'].sum().reset_index() monthly_sales = monthly_sales.rename(columns={'year': 'year', 'month': 'month', 'sold_qty': 'y'}) device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = ChronosPipeline.from_pretrained( "amazon/chronos-t5-base", device_map=device, torch_dtype=torch.float32, ) context = torch.tensor(monthly_sales["y"]) prediction_length = select_period forecast = pipeline.predict(context, prediction_length) forecast_index = range(len(monthly_sales), len(monthly_sales) + prediction_length) low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0) plt.figure(figsize=(30, 10)) plt.plot(monthly_sales["y"], color="royalblue", label="Historical Data", linewidth=2) plt.plot(forecast_index, median, color="tomato", label="Median Forecast", linewidth=2) plt.fill_between(forecast_index, low, high, color="tomato", alpha=0.3, label="80% Prediction Interval") plt.title("Sales Forecasting Visualization", fontsize=16) plt.xlabel("Months", fontsize=20) plt.ylabel("Sold Qty", fontsize=20) plt.xticks(fontsize=18) plt.yticks(fontsize=18) ax = plt.gca() ax.xaxis.set_major_locator(ticker.MultipleLocator(3)) ax.yaxis.set_major_locator(ticker.MultipleLocator(5)) ax.grid(which='major', linestyle='--', linewidth=1.2, color='gray', alpha=0.7) plt.legend(fontsize=18) plt.grid(linestyle='--', linewidth=1.2, color='gray', alpha=0.7) plt.tight_layout() return plt.gcf() def home_page(): content = """ ### **Sales Forecasting with Chronos** Welcome to the future of sales optimization with **Chronos**. Say goodbye to guesswork and unlock the power of **data-driven insights** with our advanced forecasting platform. - **Seamless CSV Upload**: Quickly upload your sales data in CSV formatβ€”no technical expertise needed. - **AI-Powered Predictions**: Harness the power of state-of-the-art machine learning models to uncover trends and forecast future sales performance. - **Interactive Visualizations**: Gain actionable insights with intuitive charts and graphs that make data easy to understand. Start making smarter, data-backed business decisions today with **Chronos**! """ return content def about_page(): content = """ ### πŸ“§ **Contact Us:** - **Email**: contact@topsinfosolutions.com βœ‰οΈ - **Website**: [https://www.topsinfosolutions.com/](https://www.topsinfosolutions.com/) 🌐 ### πŸ›  **What We Offer:** - **Custom AI Solutions**: Tailored to your business needs πŸ€– - **Chatbot Development**: Build intelligent conversational agents πŸ’¬ - **Vision Models**: Computer vision solutions for various applications πŸ–ΌοΈ - **AI Agents**: Personalized agents powered by advanced LLMs πŸ€– ### πŸ€” **How We Can Help:** Reach out to us for bespoke AI services. Whether you need chatbots, vision models, or AI-powered agents, we’re here to build solutions that make a difference! 🌟 ### πŸ’¬ **Get in Touch:** If you have any questions or need a custom solution, click the button below to schedule a consultation with us. πŸ“… """ return content with gr.Blocks(theme=gr.themes.Default()) as demo: with gr.Tabs(): with gr.TabItem("Home"): df_state = gr.State() # gr.Image("/content/chronos-logo.png", interactive=False) home_output = gr.Markdown(value=home_page(), label="Playground") gr.Markdown("## Step 1: Historical/Training Data (currently supports *.csv only)") with gr.Row(): file_input = gr.File(label="Upload Historical (Training Data) Sales Data", file_types=[".csv"]) with gr.Row(): date_column = gr.Dropdown(choices=[], label="Select Date column (*Required)", multiselect=False, value=None) target_column = gr.Dropdown(choices=[], label="Select Target column (*Required)", multiselect=False, value=None) select_product_column = gr.Dropdown(choices=[], label="Select Product column (Optional)", multiselect=False, value=None) select_product = gr.Dropdown(choices=[], label="Select Product (Optional)", multiselect=False, value=None) with gr.Row(): start = gr.DateTime("2021-01-01 00:00:00", label="Training data Start date") end = gr.DateTime("2021-01-05 00:00:00", label="Training data End date") apply_btn = gr.Button("Visualize Data", scale=0) gr.Examples( examples=[ ["example_files/test_tops_product_id_1.csv"], ["example_files/test_tops_product_id_2.csv"], ["example_files/test_tops_product_id_3.csv"], ["example_files/test_tops_product_id_4.csv"] ], inputs=file_input, outputs=[df_state, select_product_column, date_column, target_column], fn=upload_file, ) with gr.Row(): historical_data_plot = gr.Plot() apply_btn.click( filter_data, inputs=[start, end, df_state, select_product_column, date_column, target_column], outputs=[df_state, historical_data_plot] ) gr.Markdown("## Step 2: Forecast") with gr.Row(): forecasting_type = gr.Radio(["day", "monthly", "year"], value="monthly", label="Forecasting Type", interactive=False) select_period = gr.Slider(2, 60, value=12, label="Select Period", info="Check Selected Forecast Type", interactive =True, step=1) forecast_btn = gr.Button("Forecast") with gr.Row(): plot_forecast_output = gr.Plot(label="Chronos Forecasting Visualization") forecast_btn.click( forecast_chronos_data, inputs=[df_state, date_column, target_column, select_period], outputs=[plot_forecast_output] ) file_input.upload( upload_file, inputs=[file_input], outputs=[df_state, select_product_column, date_column, target_column] ) select_product_column.change( set_products, inputs=[select_product_column, df_state], outputs=[] ) date_column.change( set_dates, inputs=[date_column, df_state], outputs=[start, end] ) target_column.change( lambda x: x if x else [], inputs=[target_column], outputs=[] ) with gr.TabItem("About Tops"): df_state = gr.State() # gr.Image("/content/chronos-logo.png", interactive=False) about_output = gr.Markdown(value=about_page(), label="About Tops") if __name__ == "__main__": demo.launch()