import os import jsonlines from collections import defaultdict import pandas as pd from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, matthews_corrcoef, confusion_matrix RESULT_ROOTS = "./result" LANGUAGE_MAP = { "all": "All", "C": "C/C++", "C++": "C/C++", "Java": "Java", "Python": "Python", } table_dict = {} for method in os.listdir(RESULT_ROOTS): msg_labels = defaultdict(list) msg_predicts = defaultdict(list) msg_metrics = {} nomsg_labels = defaultdict(list) nomsg_predicts = defaultdict(list) nomsg_metrics = {} mix_labels = defaultdict(list) mix_predicts = defaultdict(list) mix_metrics = {} msg_result_file = os.path.join(RESULT_ROOTS, method, "msg.jsonl") nomsg_result_file = os.path.join(RESULT_ROOTS, method, "nomsg.jsonl") if not os.path.exists(msg_result_file) or not os.path.exists(nomsg_result_file): continue with jsonlines.open(msg_result_file) as reader: for item in reader: lang = LANGUAGE_MAP[item["language"]] for section in item["sections"]: msg_labels["All"].append(section['related']) msg_predicts["All"].append(section['predict']) msg_labels[lang].append(section['related']) msg_predicts[lang].append(section['predict']) mix_labels["All"].append(section['related']) mix_predicts["All"].append(section['predict']) mix_labels[lang].append(section['related']) mix_predicts[lang].append(section['predict']) with jsonlines.open(nomsg_result_file) as reader: for item in reader: lang = LANGUAGE_MAP[item["language"]] for section in item["sections"]: nomsg_labels["All"].append(section['related']) nomsg_predicts["All"].append(section['predict']) nomsg_labels[lang].append(section['related']) nomsg_predicts[lang].append(section['predict']) mix_labels["All"].append(section['related']) mix_predicts["All"].append(section['predict']) mix_labels[lang].append(section['related']) mix_predicts[lang].append(section['predict']) for lang in LANGUAGE_MAP.values(): accuracy = accuracy_score(msg_labels[lang], msg_predicts[lang]) # precision = precision_score(msg_labels[lang], msg_predicts[lang]) # recall = recall_score(msg_labels[lang], msg_predicts[lang]) f1 = f1_score(msg_labels[lang], msg_predicts[lang]) mcc = matthews_corrcoef(msg_labels[lang], msg_predicts[lang]) tp, fp, tn, fn = confusion_matrix(msg_labels[lang], msg_predicts[lang]).ravel() fpr = fp / (fp + tn + 1e-6) msg_metrics.update({ f"{lang}_Acc": f"{accuracy * 100:.2f}\\%", # f"{lang}_P": f"{precision * 100:.2f}%", # f"{lang}_R": f"{recall * 100:.2f}%", f"{lang}_F1": f"{f1 * 100:.2f}\\%", # f"{lang}_FPR": f"{fpr * 100:.2f}\\%", f"{lang}_MCC": f"{mcc * 100:.2f}\\%" }) accuracy = accuracy_score(nomsg_labels[lang], nomsg_predicts[lang]) # precision = precision_score(nomsg_labels[lang], nomsg_predicts[lang]) # recall = recall_score(nomsg_labels[lang], nomsg_predicts[lang]) f1 = f1_score(nomsg_labels[lang], nomsg_predicts[lang]) mcc = matthews_corrcoef(nomsg_labels[lang], nomsg_predicts[lang]) tp, fp, tn, fn = confusion_matrix(nomsg_labels[lang], nomsg_predicts[lang]).ravel() fpr = fp / (fp + tn + 1e-6) nomsg_metrics.update({ f"{lang}_Acc": f"{accuracy * 100:.2f}\\%", # f"{lang}_P": f"{precision * 100:.2f}%", # f"{lang}_R": f"{recall * 100:.2f}%", f"{lang}_F1": f"{f1 * 100:.2f}\\%", # f"{lang}_FPR": f"{fpr * 100:.2f}\\%", f"{lang}_MCC": f"{mcc * 100:.2f}\\%" }) accuracy = accuracy_score(mix_labels[lang], mix_predicts[lang]) # precision = precision_score(mix_labels[lang], mix_predicts[lang]) # recall = recall_score(mix_labels[lang], mix_predicts[lang]) f1 = f1_score(mix_labels[lang], mix_predicts[lang]) mcc = matthews_corrcoef(mix_labels[lang], mix_predicts[lang]) tp, fp, tn, fn = confusion_matrix(mix_labels[lang], mix_predicts[lang]).ravel() fpr = fp / (fp + tn + 1e-6) mix_metrics.update({ f"{lang}_Acc": f"{accuracy * 100:.2f}\\%", # f"{lang}_P": f"{precision * 100:.2f}%", # f"{lang}_R": f"{recall * 100:.2f}%", f"{lang}_F1": f"{f1 * 100:.2f}\\%", # f"{lang}_FPR": f"{fpr * 100:.2f}\\%", f"{lang}_MCC": f"{mcc * 100:.2f}\\%" }) table_dict[method] = mix_metrics if method == "patchouli": table_dict[f"{method}_msg"] = msg_metrics table_dict[f"{method}_nomsg"] = nomsg_metrics df = pd.DataFrame(table_dict).T df.to_csv("result.csv")