import gradio as gr import torch import torchvision from PIL import Image import numpy as np import random from einops import rearrange import matplotlib.pyplot as plt from torchvision.transforms import v2 from model import MAE_ViT, MAE_Encoder, MAE_Decoder, MAE_Encoder_FeatureExtractor path = [['images/cat.jpg'], ['images/dog.jpg']] model_name = "vit-t-mae-pretrain.pt" model = torch.load(model_name, map_location='cpu') model.eval() device = torch.device("cpu") model.to(device) transform = v2.Compose([ v2.Resize((32, 32)), v2.ToTensor(), v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) # Load and Preprocess the Image def load_image(image_path, transform): img = Image.open(image_path).convert('RGB') # transform = Compose([ToTensor(), Normalize(0.5, 0.5), Resize((32, 32))]) img = transform(img).unsqueeze(0) # Add batch dimension return img def show_image(img, title): img = rearrange(img, "c h w -> h w c") img = (img.cpu().detach().numpy() + 1) / 2 # Normalize to [0, 1] plt.imshow(img) plt.axis('off') plt.title(title) # Visualize a Single Image def visualize_single_image(image_path, image_name, model, device): img = load_image(image_path, transform).to(device) # Run inference model.eval() with torch.no_grad(): predicted_img, mask = model(img) # Convert the tensor back to a displayable image # masked image im_masked = img * (1 - mask) # MAE reconstruction pasted with visible patches im_paste = img * (1 - mask) + predicted_img * mask # make the plt figure larger plt.figure(figsize=(12, 4)) plt.subplot(1, 4, 1) show_image(img[0], "original") plt.subplot(1, 4, 2) show_image(im_masked[0], "masked") plt.subplot(1, 4, 3) show_image(predicted_img[0], "reconstruction") plt.subplot(1, 4, 4) show_image(im_paste[0], "reconstruction + visible") plt.tight_layout() return plt # Example Usage image_path = 'images/dog.jpg' # Replace with the actual path to your image # take the string after the last '/' as the image name image_name = image_path.split('/')[-1].split('.')[0] visualize_single_image(image_path, image_name, model, device) inputs_image = [ gr.components.Image(type="filepath", label="Input Image"), ] outputs_image = [ gr.outputs.Image(type="plot", label="Output Image"), ] gr.Interface( fn=visualize_single_image, inputs=inputs_image, outputs=outputs_image, title="MAE-ViT Image Reconstruction", description="This is a demo of the MAE-ViT model for image reconstruction.", allow_flagging=False, allow_screenshot=False, allow_remote_access=False, ).launch()