import argparse import binascii import glob import os import os.path import numpy as np import matplotlib.pyplot as plt import random import sys import tempfile import time import torch from PIL import Image from diffusers import StableDiffusionPipeline import gradio as gr import artist_lib from dotenv import load_dotenv load_dotenv() SERVER_NAME = os.getenv("SERVER_NAME") drawdemo = gr.Interface( fn=artist_lib.draw, inputs=[ gr.Text(label="Drawing description text", value="hindu mandala neon orange and blue"), gr.Dropdown(label='Model', choices=["stable-diffusion-2", "stable-diffusion-2-1", "stable-diffusion-v1-5"], value="stable-diffusion-v1-5"), gr.Checkbox(label="Force-New"), ], outputs="image", examples=[ ['hindu mandala fruit salad', "stable-diffusion-v1-5", False] ], ) with gr.Blocks() as gallerydemo: with gr.Column(variant="panel"): with gr.Row(variant="compact"): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt" ) btn = gr.Button("Generate image") gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ) btn.click(artist_lib.fake_gan, None, gallery) artist = gr.TabbedInterface( [drawdemo], ["Draw"]) artist.queue( max_size = 4 ) artist.launch()