import sys import pickle import gc import time import requests from functools import partial from string import Template from datetime import datetime from concurrent.futures import ThreadPoolExecutor from collections import defaultdict from tqdm import tqdm from web3 import Web3 from typing import Any, Optional from web3.types import BlockParams from utils import ( JSON_DATA_DIR, DATA_DIR, SUBGRAPH_API_KEY, to_content, SUBGRAPH_URL, HIST_DIR, TMP_DIR, ) from queries import conditional_tokens_gc_user_query, omen_xdai_trades_query import pandas as pd REDUCE_FACTOR = 0.25 SLEEP = 0.5 QUERY_BATCH_SIZE = 1000 FPMM_QS_CREATOR = "0x89c5cc945dd550bcffb72fe42bff002429f46fec" FPMM_PEARL_CREATOR = "0xFfc8029154ECD55ABED15BD428bA596E7D23f557" LATEST_BLOCK: Optional[int] = None LATEST_BLOCK_NAME: BlockParams = "latest" BLOCK_DATA_NUMBER = "number" BLOCKS_CHUNK_SIZE = 10_000 N_IPFS_RETRIES = 4 N_RPC_RETRIES = 100 RPC_POLL_INTERVAL = 0.05 SUBGRAPH_POLL_INTERVAL = 0.05 IPFS_POLL_INTERVAL = 0.2 # 5 calls per second OMEN_SUBGRAPH_URL = Template( """https://gateway-arbitrum.network.thegraph.com/api/${subgraph_api_key}/subgraphs/id/9fUVQpFwzpdWS9bq5WkAnmKbNNcoBwatMR4yZq81pbbz""" ) headers = { "Accept": "application/json, multipart/mixed", "Content-Type": "application/json", } def parse_args() -> str: """Parse the arguments and return the RPC.""" if len(sys.argv) != 2: raise ValueError("Expected the RPC as a positional argument.") return sys.argv[1] def read_abi(abi_path: str) -> str: """Read and return the wxDAI contract's ABI.""" with open(abi_path) as abi_file: return abi_file.read() def update_block_request_map(block_request_id_map: dict) -> None: print("Saving block request id map info") with open(JSON_DATA_DIR / "block_request_id_map.pickle", "wb") as handle: pickle.dump(block_request_id_map, handle, protocol=pickle.HIGHEST_PROTOCOL) def reduce_window(contract_instance, event, from_block, batch_size, latest_block): """Dynamically reduce the batch size window.""" keep_fraction = 1 - REDUCE_FACTOR events_filter = contract_instance.events[event].build_filter() events_filter.fromBlock = from_block batch_size = int(batch_size * keep_fraction) events_filter.toBlock = min(from_block + batch_size, latest_block) tqdm.write(f"RPC timed out! Resizing batch size to {batch_size}.") time.sleep(SLEEP) return events_filter, batch_size def block_number_to_timestamp(block_number: int, web3: Web3) -> str: """Convert a block number to a timestamp.""" block = web3.eth.get_block(block_number) timestamp = datetime.utcfromtimestamp(block["timestamp"]) try: timestamp_str = timestamp.strftime("%Y-%m-%d %H:%M:%S") timestamp = datetime.strptime(timestamp_str, "%Y-%m-%dT%H:%M:%S.%f") except Exception as e: timestamp = datetime.utcfromtimestamp(block["timestamp"]) return timestamp.strftime("%Y-%m-%d %H:%M:%S") def parallelize_timestamp_conversion(df: pd.DataFrame, function: callable) -> list: """Parallelize the timestamp conversion.""" block_numbers = df["request_block"].tolist() with ThreadPoolExecutor(max_workers=10) as executor: results = list( tqdm(executor.map(function, block_numbers), total=len(block_numbers)) ) return results def updating_timestamps(rpc: str, tools_filename: str): web3 = Web3(Web3.HTTPProvider(rpc)) tools = pd.read_parquet(TMP_DIR / tools_filename) # Convert block number to timestamp print("Converting block number to timestamp") t_map = pickle.load(open(TMP_DIR / "t_map.pkl", "rb")) tools["request_time"] = tools["request_block"].map(t_map) no_data = tools["request_time"].isna().sum() print(f"Total rows with no request time info = {no_data}") # Identify tools with missing request_time and fill them missing_time_indices = tools[tools["request_time"].isna()].index if not missing_time_indices.empty: partial_block_number_to_timestamp = partial( block_number_to_timestamp, web3=web3 ) missing_timestamps = parallelize_timestamp_conversion( tools.loc[missing_time_indices], partial_block_number_to_timestamp ) # Update the original DataFrame with the missing timestamps for i, timestamp in zip(missing_time_indices, missing_timestamps): tools.at[i, "request_time"] = timestamp tools["request_month_year"] = pd.to_datetime(tools["request_time"]).dt.strftime( "%Y-%m" ) tools["request_month_year_week"] = ( pd.to_datetime(tools["request_time"]) .dt.to_period("W") .dt.start_time.dt.strftime("%b-%d-%Y") ) # Save the tools data after the updates on the content print(f"Updating file {tools_filename} with timestamps") tools.to_parquet(TMP_DIR / tools_filename, index=False) # Update t_map with new timestamps new_timestamps = ( tools[["request_block", "request_time"]] .dropna() .set_index("request_block") .to_dict()["request_time"] ) t_map.update(new_timestamps) # filtering old timestamps cutoff_date = datetime(2024, 9, 9) filtered_map = { k: v for k, v in t_map.items() if datetime.strptime(v, "%Y-%m-%d %H:%M:%S") < cutoff_date } with open(DATA_DIR / "t_map.pkl", "wb") as f: pickle.dump(filtered_map, f) # clean and release all memory del tools del t_map gc.collect() def query_conditional_tokens_gc_subgraph(creator: str) -> dict[str, Any]: """Query the subgraph.""" subgraph = SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY) all_results: dict[str, Any] = {"data": {"user": {"userPositions": []}}} userPositions_id_gt = "" while True: query = conditional_tokens_gc_user_query.substitute( id=creator.lower(), first=QUERY_BATCH_SIZE, userPositions_id_gt=userPositions_id_gt, ) content_json = {"query": query} # print("sending query to subgraph") res = requests.post(subgraph, headers=headers, json=content_json) result_json = res.json() # print(f"result = {result_json}") user_data = result_json.get("data", {}).get("user", {}) if not user_data: break user_positions = user_data.get("userPositions", []) if user_positions: all_results["data"]["user"]["userPositions"].extend(user_positions) userPositions_id_gt = user_positions[len(user_positions) - 1]["id"] else: break if len(all_results["data"]["user"]["userPositions"]) == 0: return {"data": {"user": None}} return all_results def query_omen_xdai_subgraph( trader_category: str, from_timestamp: float, to_timestamp: float, fpmm_from_timestamp: float, fpmm_to_timestamp: float, ) -> dict[str, Any]: """Query the subgraph.""" omen_subgraph = OMEN_SUBGRAPH_URL.substitute(subgraph_api_key=SUBGRAPH_API_KEY) print(f"omen_subgraph = {omen_subgraph}") grouped_results = defaultdict(list) id_gt = "" if trader_category == "quickstart": creator_id = FPMM_QS_CREATOR.lower() else: # pearl creator_id = FPMM_PEARL_CREATOR.lower() while True: query = omen_xdai_trades_query.substitute( fpmm_creator=creator_id, creationTimestamp_gte=int(from_timestamp), creationTimestamp_lte=int(to_timestamp), fpmm_creationTimestamp_gte=int(fpmm_from_timestamp), fpmm_creationTimestamp_lte=int(fpmm_to_timestamp), first=QUERY_BATCH_SIZE, id_gt=id_gt, ) print(f"omen query={query}") content_json = to_content(query) res = requests.post(omen_subgraph, headers=headers, json=content_json) result_json = res.json() # print(f"result = {result_json}") user_trades = result_json.get("data", {}).get("fpmmTrades", []) if not user_trades: break for trade in user_trades: fpmm_id = trade.get("fpmm", {}).get("id") grouped_results[fpmm_id].append(trade) id_gt = user_trades[len(user_trades) - 1]["id"] all_results = { "data": { "fpmmTrades": [ trade for trades_list in grouped_results.values() for trade in trades_list ] } } return all_results # def get_earliest_block(event_name: MechEventName) -> int: # """Get the earliest block number to use when filtering for events.""" # filename = gen_event_filename(event_name) # if not os.path.exists(DATA_DIR / filename): # return 0 # df = pd.read_parquet(DATA_DIR / filename) # block_field = f"{event_name.value.lower()}_{BLOCK_FIELD}" # earliest_block = int(df[block_field].max()) # # clean and release all memory # del df # gc.collect() # return earliest_block