import pandas as pd import gradio as gr import matplotlib.pyplot as plt import seaborn as sns from seaborn import FacetGrid import plotly.express as px import plotly.graph_objs as go HEIGHT = 600 WIDTH = 1000 def plot_daily_invalid_trades_plotly(invalid_trades: pd.DataFrame): fig = px.histogram(invalid_trades, x="creation_date") return gr.Plot(value=fig) def plot_daily_dist_invalid_trades(invalid_trades: pd.DataFrame): """Function to paint the distribution of daily invalid trades, no matter which market""" sns.set_theme(palette="viridis") plt.figure(figsize=(25, 10)) plot2 = sns.histplot(data=invalid_trades, x="creation_date", kde=True) plt.xlabel("Creation date") plt.ylabel("Daily number of invalid trades") plt.xticks(rotation=45, ha="right") daily_trades_fig = plot2.get_figure() return gr.Plot(value=daily_trades_fig) def plot_daily_nr_invalid_markets(invalid_trades: pd.DataFrame): """Function to paint the number of invalid markets over time""" daily_invalid_markets = ( invalid_trades.groupby("creation_date") .agg(trades_count=("title", "count"), nr_markets=("title", "nunique")) .reset_index() ) daily_invalid_markets["creation_date"] = daily_invalid_markets[ "creation_date" ].astype(str) daily_invalid_markets.columns = daily_invalid_markets.columns.astype(str) return gr.LinePlot( value=daily_invalid_markets, x="creation_date", y="nr_markets", y_title="nr_markets", interactive=True, show_actions_button=True, tooltip=["creation_date", "nr_markets", "trades_count"], height=HEIGHT, width=WIDTH, ) def plotly_daily_nr_invalid_markets(invalid_trades: pd.DataFrame) -> gr.Plot: daily_invalid_markets = ( invalid_trades.groupby("creation_date") .agg(trades_count=("title", "count"), nr_markets=("title", "nunique")) .reset_index() ) # Create the Plotly figure fig = go.Figure() # Add the line trace fig.add_trace( go.Scatter( x=daily_invalid_markets["creation_date"], y=daily_invalid_markets["nr_markets"], mode="lines+markers", name="Number of Markets", hovertemplate="Date: %{x}
" + "Number of Markets: %{y}
" + "Trades Count: %{text}
", text=daily_invalid_markets["trades_count"], # Used in the tooltip ) ) # Customize the layout fig.update_layout( title="Daily Invalid Markets", xaxis_title="Market Creation Date", yaxis_title="Number of Markets", xaxis=dict( tickangle=-45, # Rotate x-axis labels by -45 degrees tickfont=dict(size=10), # Adjust font size if needed ), width=1000, # Adjusted for better fit on laptop screens height=600, # Adjusted for better fit on laptop screens hovermode="closest", # Improve tooltip behavior # template="plotly_white", # Optional: set a cleaner background ) return gr.Plot( value=fig, ) def plot_ratio_invalid_trades_per_market(invalid_trades: pd.DataFrame): """Function to paint the number of invalid trades that the same market accummulates""" cat = invalid_trades["title"] codes, uniques = pd.factorize(cat) # add the IDs as a new column to the original dataframe invalid_trades["title_id"] = codes plot: FacetGrid = sns.displot(invalid_trades, x="title_id") plt.xlabel("market id") plt.ylabel("Total number of invalid trades by market") plt.title("Distribution of invalid trades per market") return gr.Plot(value=plot.figure) def plot_top_invalid_markets(invalid_trades: pd.DataFrame): """Function to paint the top markets with the highest number of invalid trades""" top_invalid_markets: pd.DataFrame = ( invalid_trades.title.value_counts().reset_index() ) print(top_invalid_markets.head(5)) top_invalid_markets = top_invalid_markets.head(5) top_invalid_markets.rename(columns={"count": "nr_invalid_trades"}, inplace=True) return gr.DataFrame(top_invalid_markets)