import gradio as gr import pandas as pd import plotly.express as px import plotly.graph_objects as go from plotly.subplots import make_subplots from datetime import datetime HEIGHT = 400 WIDTH = 1100 def prepare_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Prepares the trades data for analysis.""" trades_df["creation_timestamp"] = pd.to_datetime(trades_df["creation_timestamp"]) trades_df["creation_date"] = trades_df["creation_timestamp"].dt.date trades_df["creation_timestamp"] = trades_df["creation_timestamp"].dt.tz_convert( "UTC" ) trades_df = trades_df.sort_values(by="creation_timestamp", ascending=True) trades_df["month_year"] = ( trades_df["creation_timestamp"].dt.to_period("M").astype(str) ) trades_df["month_year_week"] = ( trades_df["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d") ) trades_df["winning_trade"] = trades_df["winning_trade"].astype(int) return trades_df def get_overall_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Gets the overall trades data""" trades_count = trades_df.groupby("month_year_week").size().reset_index() trades_count.columns = trades_count.columns.astype(str) trades_count.rename(columns={"0": "trades"}, inplace=True) return trades_count def get_overall_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Gets the overall trades data""" trades_count = ( trades_df.groupby(["month_year_week", "market_creator"], sort=False) .size() .reset_index() ) trades_count.columns = trades_count.columns.astype(str) trades_count.rename(columns={"0": "trades"}, inplace=True) return trades_count def get_overall_winning_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Gets the overall winning trades data for the given tools and calculates the winning percentage.""" winning_trades = ( trades_df.groupby(["month_year_week"])["winning_trade"].sum() / trades_df.groupby(["month_year_week"])["winning_trade"].count() * 100 ) # winning_trades is a series, give it a dataframe winning_trades = winning_trades.reset_index() winning_trades.columns = winning_trades.columns.astype(str) winning_trades.columns = ["month_year_week", "winning_trade"] return winning_trades def get_overall_winning_by_market_trades(trades_df: pd.DataFrame) -> pd.DataFrame: """Gets the overall winning trades data for the given tools and calculates the winning percentage.""" winning_trades = ( trades_df.groupby(["month_year_week", "market_creator"], sort=False)[ "winning_trade" ].sum() / trades_df.groupby(["month_year_week", "market_creator"], sort=False)[ "winning_trade" ].count() * 100 ) winning_trades = winning_trades.reset_index() winning_trades.columns = winning_trades.columns.astype(str) winning_trades.columns = ["month_year_week", "market_creator", "winning_trade"] return winning_trades def get_overall_winning_by_market_and_trader_type( trades_df: pd.DataFrame, ) -> pd.DataFrame: """Gets the overall winning trades data for the given tools and calculates the winning percentage.""" # Group by week, market_creator and staking_type winning_trades = ( trades_df.groupby( ["month_year_week", "market_creator", "staking_type"], sort=False )["winning_trade"].sum() / trades_df.groupby( ["month_year_week", "market_creator", "staking_type"], sort=False )["winning_trade"].count() * 100 ) winning_trades = winning_trades.reset_index() winning_trades.columns = winning_trades.columns.astype(str) winning_trades.columns = [ "month_year_week", "market_creator", "staking_type", "winning_trade", ] return winning_trades def plot_trades_by_week(trades_df: pd.DataFrame) -> gr.BarPlot: """Plots the weekly trades data .""" return gr.BarPlot( value=trades_df, x="month_year_week", y="trades", show_label=True, interactive=True, show_actions_button=True, tooltip=["month_year_week", "trades"], height=HEIGHT, width=WIDTH, ) def integrated_plot_trades_per_market_by_week(trades_df: pd.DataFrame) -> gr.Plot: # adding the total trades_all = trades_df.copy(deep=True) trades_all["market_creator"] = "all" # merging both dataframes all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True) all_filtered_trades = all_filtered_trades.sort_values( by="creation_timestamp", ascending=True ) trades = get_overall_by_market_trades(all_filtered_trades) fig = px.bar( trades, x="month_year_week", y="trades", color="market_creator", barmode="group", color_discrete_sequence=["purple", "goldenrod", "darkgreen"], category_orders={"market_creator": ["pearl", "quickstart", "all"]}, ) fig.update_layout( xaxis_title="Week", yaxis_title="Weekly nr of trades", legend=dict(yanchor="top", y=0.5), ) fig.update_layout(width=WIDTH, height=HEIGHT) fig.update_xaxes(tickformat="%b %d\n%Y") return gr.Plot(value=fig) def integrated_plot_trades_per_market_by_week_v2(trades_df: pd.DataFrame) -> gr.Plot: # adding the total trades_all = trades_df.copy(deep=True) trades_all["market_creator"] = "all" # merging both dataframes all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True) all_filtered_trades = all_filtered_trades.sort_values( by="creation_timestamp", ascending=True ) # Create binary staking category all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply( lambda x: "non_Olas" if x == "non_Olas" else "Olas" ) # Group by week, market_creator and staking_type trades = ( all_filtered_trades.groupby( ["month_year_week", "market_creator", "staking_type"], sort=False ) .size() .reset_index(name="trades") ) # Convert string dates to datetime and sort them all_dates_dt = sorted( [ datetime.strptime(date, "%b-%d") for date in trades["month_year_week"].unique() ] ) # Convert back to string format all_dates = [date.strftime("%b-%d") for date in all_dates_dt] # Combine the traces final_traces = [] market_colors = {"pearl": "darkviolet", "quickstart": "goldenrod", "all": "green"} market_darker_colors = { "pearl": "purple", "quickstart": "darkgoldenrod", "all": "darkgreen", } # Process both Olas and non-Olas traces for each market together for market in ["pearl", "quickstart", "all"]: market_data = trades[trades["market_creator"] == market] # Create a dictionary to store the Olas values for each week olas_values = dict( zip( market_data[market_data["staking_type"] == "Olas"]["month_year_week"], market_data[market_data["staking_type"] == "Olas"]["trades"], ) ) # First add 'Olas' trace olas_data = market_data[market_data["staking_type"] == "Olas"] olas_trace = go.Bar( x=olas_data["month_year_week"], y=olas_data["trades"], name=f"{market}-Olas", marker_color=market_colors[market], offsetgroup=market, # Keep the market grouping showlegend=True, ) # Then add 'non_Olas' trace with base set to olas values non_Olas_data = market_data[market_data["staking_type"] == "non_Olas"] non_Olas_trace = go.Bar( x=non_Olas_data["month_year_week"], y=non_Olas_data["trades"], name=f"{market}-non_Olas", marker_color=market_darker_colors[market], offsetgroup=market, # Keep the market grouping base=[olas_values.get(x, 0) for x in non_Olas_data["month_year_week"]], showlegend=True, ) final_traces.extend([olas_trace, non_Olas_trace]) # Create new figure with the combined traces fig = go.Figure(data=final_traces) # Update layout fig.update_layout( xaxis_title="Week", yaxis_title="Weekly nr of trades", legend=dict(yanchor="top", y=0.5), width=WIDTH, height=HEIGHT, barmode="group", ) # Update x-axis format fig.update_xaxes(tickformat="%b %d\n%Y") # Update layout to force x-axis category order (hotfix for a sorting issue) fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates}) return gr.Plot(value=fig) def integrated_plot_winning_trades_per_market_by_week( trades_df: pd.DataFrame, ) -> gr.Plot: # adding the total trades_all = trades_df.copy(deep=True) trades_all["market_creator"] = "all" # merging both dataframes all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True) all_filtered_trades = all_filtered_trades.sort_values( by="creation_timestamp", ascending=True ) final_df = get_overall_winning_by_market_trades(all_filtered_trades) fig = px.bar( final_df, x="month_year_week", y="winning_trade", color="market_creator", barmode="group", color_discrete_sequence=["purple", "goldenrod", "darkgreen"], category_orders={"market_creator": ["pearl", "quickstart", "all"]}, ) fig.update_layout( xaxis_title="Week", yaxis_title="Weekly % of winning trades", legend=dict(yanchor="top", y=0.5), ) fig.update_layout(width=WIDTH, height=HEIGHT) fig.update_xaxes(tickformat="%b %d\n%Y") return gr.Plot( value=fig, ) def integrated_plot_winning_trades_per_market_by_week_v2( trades_df: pd.DataFrame, trader_filter: str = "all" ) -> gr.Plot: # adding the total trades_all = trades_df.copy(deep=True) trades_all["market_creator"] = "all" # merging both dataframes all_filtered_trades = pd.concat([trades_df, trades_all], ignore_index=True) all_filtered_trades = all_filtered_trades.sort_values( by="creation_timestamp", ascending=True ) # Create binary staking category all_filtered_trades["staking_type"] = all_filtered_trades["staking"].apply( lambda x: "non_Olas" if x == "non_Olas" else "Olas" ) if trader_filter == "all": final_df = get_overall_winning_by_market_trades(all_filtered_trades) else: final_df = get_overall_winning_by_market_and_trader_type(all_filtered_trades) # Convert string dates to datetime and sort them all_dates_dt = sorted( [ datetime.strptime(date, "%b-%d") for date in final_df["month_year_week"].unique() ] ) # Convert back to string format all_dates = [date.strftime("%b-%d") for date in all_dates_dt] color_discrete_sequence = ["darkviolet", "goldenrod", "green"] if trader_filter == "Olas": final_df = final_df[final_df["staking_type"] == "Olas"] elif trader_filter == "non_Olas": final_df = final_df[final_df["staking_type"] == "non_Olas"] color_discrete_sequence = ["purple", "darkgoldenrod", "darkgreen"] fig = px.bar( final_df, x="month_year_week", y="winning_trade", color="market_creator", barmode="group", color_discrete_sequence=color_discrete_sequence, category_orders={"market_creator": ["pearl", "quickstart", "all"]}, ) fig.update_layout( xaxis_title="Week", yaxis_title="Weekly % of winning trades", legend=dict(yanchor="top", y=0.5), ) fig.update_xaxes(tickformat="%b %d\n%Y") # Update layout to force x-axis category order (hotfix for a sorting issue) fig.update_layout(xaxis={"categoryorder": "array", "categoryarray": all_dates}) return gr.Plot( value=fig, )