"""Some utility functions for the app.""" from base64 import b64encode from io import BytesIO from gtts import gTTS from mtranslate import translate from speech_recognition import AudioFile, Recognizer from transformers import (BlenderbotSmallForConditionalGeneration, BlenderbotSmallTokenizer) def stt(audio: object, language: str) -> str: """Converts speech to text. Args: audio: record of user speech Returns: text (str): recognized speech of user """ # Create a Recognizer object r = Recognizer() # Open the audio file with AudioFile(audio) as source: # Listen for the data (load audio to memory) audio_data = r.record(source) # Transcribe the audio using Google's speech-to-text API text = r.recognize_google(audio_data, language=language) return text def to_en_translation(text: str, language: str) -> str: """Translates text from specified language to English. Args: text (str): input text language (str): desired language Returns: str: translated text """ return translate(text, "en", language) def from_en_translation(text: str, language: str) -> str: """Translates text from english to specified language. Args: text (str): input text language (str): desired language Returns: str: translated text """ return translate(text, language, "en") class TextGenerationPipeline: """Pipeline for text generation of blenderbot model. Returns: str: generated text """ # load tokenizer and the model model_name = "facebook/blenderbot_small-90M" tokenizer = BlenderbotSmallTokenizer.from_pretrained(model_name) model = BlenderbotSmallForConditionalGeneration.from_pretrained(model_name) def __init__(self, **kwargs): """Specififying text generation parameters. For example: max_length=100 which generates text shorter than 100 tokens. Visit: https://huggingface.co/docs/transformers/main_classes/text_generation for more parameters """ self.__dict__.update(kwargs) def preprocess(self, text) -> str: """Tokenizes input text. Args: text (str): user specified text Returns: torch.Tensor (obj): text representation as tensors """ return self.tokenizer(text, return_tensors="pt") def postprocess(self, outputs) -> str: """Converts tensors into text. Args: outputs (torch.Tensor obj): model text generation output Returns: str: generated text """ return self.tokenizer.decode(outputs[0], skip_special_tokens=True) def __call__(self, text: str) -> str: """Generates text from input text. Args: text (str): user specified text Returns: str: generated text """ tokenized_text = self.preprocess(text) output = self.model.generate(**tokenized_text, **self.__dict__) return self.postprocess(output) def tts(text: str, language: str) -> object: """Converts text into audio object. Args: text (str): generated answer of bot Returns: object: text to speech object """ return gTTS(text=text, lang=language, slow=False) def tts_to_bytesio(tts_object: object) -> bytes: """Converts tts object to bytes. Args: tts_object (object): audio object obtained from gtts Returns: bytes: audio bytes """ bytes_object = BytesIO() tts_object.write_to_fp(bytes_object) bytes_object.seek(0) return bytes_object.getvalue() def html_audio_autoplay(bytes: bytes) -> object: """Creates html object for autoplaying audio at gradio app. Args: bytes (bytes): audio bytes Returns: object: html object that provides audio autoplaying """ b64 = b64encode(bytes).decode() html = f""" """ return html