import streamlit as st import pandas as pd from transformers import pipeline import torch from transformers import AutoModel, AutoTokenizer import torch.nn.functional as F import torch import torch.nn as nn from huggingface_hub import PyTorchModelHubMixin bert_model = AutoModel.from_pretrained("bert-base-uncased") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") class MyModel( nn.Module, PyTorchModelHubMixin, # optionally, you can add metadata which gets pushed to the model card # repo_url="your-repo-url", pipeline_tag="text-classification", license="mit", ): def __init__(self, bert_model, moral_label=2): super(MyModel, self).__init__() self.bert = bert_model bert_dim = 768 self.invariant_trans = nn.Linear(768, 768) self.moral_classification = nn.Sequential(nn.Linear(768,768), nn.ReLU(), nn.Linear(768, moral_label)) def forward(self, input_ids, token_type_ids, attention_mask): pooled_output = self.bert(input_ids, token_type_ids = token_type_ids, attention_mask = attention_mask).last_hidden_state[:,0,:] pooled_output = self.invariant_trans(pooled_output) logits = self.moral_classification(pooled_output) return logits def preprocessing(input_text, tokenizer): ''' Returns with the following fields: - input_ids: list of token ids - token_type_ids: list of token type ids - attention_mask: list of indices (0,1) specifying which tokens should considered by the model (return_attention_mask = True). ''' return tokenizer( input_text, add_special_tokens = True, max_length = 150, padding = 'max_length', return_attention_mask = True, return_token_type_ids = True, # Add this line return_tensors = 'pt', truncation=True ) def convert_excel_to_csv(file): return pd.read_excel(file) # Function to load models from Hugging Face Hub @st.cache_resource def get_model_score(sentence, mft): # repo_name = f"vjosap/moralBERT-predict-{mft}-in-text" repo_name = f"vjosap/moralBERT-predict-{mft}-in-{model_type}" # loading the model model = MyModel.from_pretrained(repo_name, bert_model=bert_model) # preprocessing the text encodeds = preprocessing(sentence, tokenizer) # predicting the mft score output = model(**encodeds) score = F.softmax(output, dim=1) # extracting and return the second value from the tensor #mft_value = score[0, 1].item() mft_value = score[:, 1].tolist() return mft_value @st.cache_resource def load_model(model_name): return pipeline("text-classification", model=model_name, return_all_scores=True) def set_custom_theme(): st.markdown(""" """, unsafe_allow_html=True) # Apply custom theme set_custom_theme() # Existing page element style page_element = """ """ # Add the style to your Streamlit app st.markdown(page_element, unsafe_allow_html=True) # File upload section st.title("Moral Values Detection App") st.markdown("Authors: [Vjosa Preniqi](https://scholar.google.com/citations?user=CLZ3LL4AAAAJ&hl=en) and [Iacopo Ghinassi](https://scholar.google.com/citations?user=ANXW5EAAAAAJ&hl=en).") st.header("Introduction", divider = "red") st.markdown("""This app implements the models described in the papers [MoralBERT: A Fine-Tuned Language Model for Capturing Moral Values in Social Discussions](https://dl.acm.org/doi/abs/10.1145/3677525.3678694) and [Automatic Detection of Moral Values in Music Lyrics](https://arxiv.org/abs/2407.18787). With this app, you can automatically predict and label text or music lyrics with 10 moral categories. To use it, upload a CSV or Excel file with a single column named "text" (for regular text) or "lyrics" (for music lyrics). Each row should have the text or lyric you want to analyse. Keep in mind, the process may take up to 10 seconds per entry, and the models work best with social media content and music lyrics. Once the analysis is done, the app will show a table with the predicted probabilities for each moral value. You can download this table using the provided button. Note that some moral values might have consistently low probabilities. If that's the case, you may need to use a lower threshold to identify them—check the original papers for more details.""") model_type = st.radio("Select the content type to choose the appropriate prediction model", ('text', 'lyrics')) # Warning if model type is not selected before file upload if not model_type: st.warning("Please pick the content type for prediction first.") # File upload section st.write(f"Upload a CSV or Excel file with a column named 'text' or 'lyrics' based on the model type you chose.") uploaded_file = st.file_uploader("Choose a CSV or Excel file", type=["csv", "xlsx"]) if uploaded_file is not None: # Read CSV file_extension = uploaded_file.name.split('.')[-1].lower() if file_extension == "csv": df = pd.read_csv(uploaded_file) elif file_extension == "xlsx": df = convert_excel_to_csv(uploaded_file) # Validation: Check if the correct column exists based on the selected model type expected_column = 'lyrics' if model_type == 'lyrics' else 'text' if expected_column not in df.columns: st.error(f"Please upload a CSV file with a '{expected_column}' column since you selected '{model_type}' for prediction.") else: textual_content = df[expected_column].tolist() # List of moral foundation models models = ["care", "harm", "fairness", "cheating", "loyalty", "betrayal", "authority", "subversion", "purity", "degradation"] # Initialize the dataframe to store results result_df = pd.DataFrame(textual_content, columns=[expected_column]) batch_size = 64 # Perform predictions using each model for model_name in models: st.write(f"Processing with model: {model_name}") probabilities = [] # Process in batches for idx in range(len(textual_content)//batch_size): preds = get_model_score(textual_content[idx*batch_size:(idx+1)*batch_size], model_name) probabilities.extend(preds) # if len(textual_content)%batch_size: # preds = get_model_score(textual_content[(idx+1)*batch_size:], model_name) # probabilities.extend(preds) # Handle the remainder if the total number of items isn't a multiple of batch_size remainder_start = (len(textual_content) // batch_size) * batch_size if len(textual_content) % batch_size: preds = get_model_score(textual_content[remainder_start:], model_name) probabilities.extend(preds) # Add the results to the dataframe result_df[f'{model_name}'] = probabilities # Display the dataframe st.dataframe(result_df) # Button to download the dataframe as CSV @st.cache_data def convert_df(df): return df.to_csv(index=False).encode('utf-8') csv = convert_df(result_df) st.download_button( label="Download Results as CSV", data=csv, file_name='predictions.csv', mime='text/csv', )