import importlib import streamlit as st import weave from dotenv import load_dotenv from guardrails_genie.guardrails import GuardrailManager from guardrails_genie.llm import OpenAIModel load_dotenv() weave.init(project_name="guardrails-genie") if "guardrails" not in st.session_state: st.session_state.guardrails = [] if "guardrail_names" not in st.session_state: st.session_state.guardrail_names = [] if "guardrails_manager" not in st.session_state: st.session_state.guardrails_manager = None def initialize_guardrails(): st.session_state.guardrails = [] for guardrail_name in st.session_state.guardrail_names: if guardrail_name == "PromptInjectionSurveyGuardrail": survey_guardrail_model = st.sidebar.selectbox( "Survey Guardrail LLM", ["", "gpt-4o-mini", "gpt-4o"] ) if survey_guardrail_model: st.session_state.guardrails.append( getattr( importlib.import_module("guardrails_genie.guardrails"), guardrail_name, )(llm_model=OpenAIModel(model_name=survey_guardrail_model)) ) else: st.session_state.guardrails.append( getattr( importlib.import_module("guardrails_genie.guardrails"), guardrail_name, )() ) st.session_state.guardrails_manager = GuardrailManager( guardrails=st.session_state.guardrails ) openai_model = st.sidebar.selectbox( "OpenAI LLM for Chat", ["", "gpt-4o-mini", "gpt-4o"] ) chat_condition = openai_model != "" guardrails = [] guardrail_names = st.sidebar.multiselect( label="Select Guardrails", options=[ cls_name for cls_name, cls_obj in vars( importlib.import_module("guardrails_genie.guardrails") ).items() if isinstance(cls_obj, type) and cls_name != "GuardrailManager" ], ) st.session_state.guardrail_names = guardrail_names # Use session state to track if the chat has started if "chat_started" not in st.session_state: st.session_state.chat_started = False # Start chat when button is pressed if st.sidebar.button("Start Chat") and chat_condition: st.session_state.chat_started = True # Display chat UI if chat has started if st.session_state.chat_started: with st.sidebar.status("Initializing Guardrails..."): initialize_guardrails() st.title("Guardrails Genie") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] llm_model = OpenAIModel(model_name=openai_model) # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # React to user input if prompt := st.chat_input("What is up?"): # Display user message in chat message container st.chat_message("user").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) guardrails_response, call = st.session_state.guardrails_manager.guard.call( st.session_state.guardrails_manager, prompt=prompt ) if guardrails_response["safe"]: response, call = llm_model.predict.call( llm_model, user_prompts=prompt, messages=st.session_state.messages ) response = response.choices[0].message.content # Display assistant response in chat message container with st.chat_message("assistant"): st.markdown(response + f"\n\n---\n[Explore in Weave]({call.ui_url})") # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response}) else: st.error("Guardrails detected an issue with the prompt.") for alert in guardrails_response["alerts"]: st.error(f"{alert['guardrail_name']}: {alert['response']}") st.error(f"For details, explore in Weave at {call.ui_url}")