import streamlit as st import weave from dotenv import load_dotenv from guardrails_genie.llm import OpenAIModel load_dotenv() weave.init(project_name="guardrails-genie") openai_model = st.sidebar.selectbox("OpenAI LLM", ["", "gpt-4o-mini", "gpt-4o"]) chat_condition = openai_model != "" # Use session state to track if the chat has started if "chat_started" not in st.session_state: st.session_state.chat_started = False # Start chat when button is pressed if st.sidebar.button("Start Chat") and chat_condition: st.session_state.chat_started = True # Display chat UI if chat has started if st.session_state.chat_started: st.title("Guardrails Genie") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] llm_model = OpenAIModel(model_name=openai_model) # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # React to user input if prompt := st.chat_input("What is up?"): # Display user message in chat message container st.chat_message("user").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) response, call = llm_model.predict.call( llm_model, user_prompts=prompt, messages=st.session_state.messages ) response = response.choices[0].message.content # Display assistant response in chat message container with st.chat_message("assistant"): st.markdown(response + f"\n\n---\n[Explore in Weave]({call.ui_url})") # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})