import evaluate import numpy as np import streamlit as st from datasets import load_dataset from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, ) from transformers.trainer_callback import TrainerControl, TrainerState import wandb class StreamlitProgressbarCallback(TrainerCallback): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.progress_bar = st.progress(0, text="Training") def on_step_begin( self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs, ): super().on_step_begin(args, state, control, **kwargs) self.progress_bar.progress( (state.global_step * 100 // state.max_steps) + 1, text=f"Training {state.global_step} / {state.max_steps}", ) def train_binary_classifier( project_name: str, entity_name: str, run_name: str, dataset_repo: str = "geekyrakshit/prompt-injection-dataset", model_name: str = "distilbert/distilbert-base-uncased", prompt_column_name: str = "prompt", learning_rate: float = 1e-5, batch_size: int = 16, num_epochs: int = 2, weight_decay: float = 0.01, save_steps: int = 1000, streamlit_mode: bool = False, ): wandb.init(project=project_name, entity=entity_name, name=run_name) if streamlit_mode: st.markdown( f"Explore your training logs on [Weights & Biases]({wandb.run.url})" ) dataset = load_dataset(dataset_repo) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenized_datasets = dataset.map( lambda examples: tokenizer(examples[prompt_column_name], truncation=True), batched=True, ) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) accuracy = evaluate.load("accuracy") def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels) id2label = {0: "SAFE", 1: "INJECTION"} label2id = {"SAFE": 0, "INJECTION": 1} model = AutoModelForSequenceClassification.from_pretrained( model_name, num_labels=2, id2label=id2label, label2id=label2id, ) trainer = Trainer( model=model, args=TrainingArguments( output_dir="binary-classifier", learning_rate=learning_rate, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size, num_train_epochs=num_epochs, weight_decay=weight_decay, eval_strategy="epoch", save_strategy="steps", save_steps=save_steps, load_best_model_at_end=True, push_to_hub=False, report_to="wandb", logging_strategy="steps", logging_steps=1, ), train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], processing_class=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, callbacks=[StreamlitProgressbarCallback()] if streamlit_mode else [], ) try: training_output = trainer.train() except Exception as e: wandb.finish() raise e wandb.finish() return training_output