# Ultralytics YOLOv5 🚀, AGPL-3.0 license # Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan # Example usage: python train.py --data GlobalWheat2020.yaml # parent # ├── yolov5 # └── datasets # └── GlobalWheat2020 ← downloads here (7.0 GB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ../datasets/GlobalWheat2020 # dataset root dir train: # train images (relative to 'path') 3422 images - images/arvalis_1 - images/arvalis_2 - images/arvalis_3 - images/ethz_1 - images/rres_1 - images/inrae_1 - images/usask_1 val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1) - images/ethz_1 test: # test images (optional) 1276 images - images/utokyo_1 - images/utokyo_2 - images/nau_1 - images/uq_1 # Classes names: 0: wheat_head # Download script/URL (optional) --------------------------------------------------------------------------------------- download: | from utils.general import download, Path # Download dir = Path(yaml['path']) # dataset root dir urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip', 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip'] download(urls, dir=dir) # Make Directories for p in 'annotations', 'images', 'labels': (dir / p).mkdir(parents=True, exist_ok=True) # Move for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \ 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1': (dir / p).rename(dir / 'images' / p) # move to /images f = (dir / p).with_suffix('.json') # json file if f.exists(): f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations