#ref: https://huggingface.co/spaces/Prgckwb/dicom-viewer/blob/main/app.py #ref: https://huggingface.co/spaces/basilshaji/Lung_Nodule_Segmentation import gradio as gr import numpy as np import polars as pl import pydicom from PIL import Image from pydicom.errors import InvalidDicomError import gradio as gr import cv2 import requests import os import torch import numpy as np from yolov5.models.experimental import attempt_load from yolov5.utils.general import non_max_suppression from yolov5.utils.augmentations import letterbox ''' # Example URLs for downloading images file_urls = [ "https://www.dropbox.com/scl/fi/n3bs5xnl2kanqmwv483k3/1_jpg.rf.4a59a63d0a7339d280dd18ef3c2e675a.jpg?rlkey=4n9dnls1byb4wm54ycxzx3ovi&st=ue5xv8yx&dl=0", "https://www.dropbox.com/scl/fi/asrmao4b4fpsrhqex8kog/2_jpg.rf.b87583d95aa220d4b7b532ae1948e7b7.jpg?rlkey=jkmux5jjy8euzhxizupdmpesb&st=v3ld14tx&dl=0", "https://www.dropbox.com/scl/fi/fi0e8zxqqy06asnu0robz/3_jpg.rf.d2932cce7e88c2675e300ececf9f1b82.jpg?rlkey=hfdqwxkxetabe38ukzbb39pl5&st=ga1uouhj&dl=0", "https://www.dropbox.com/scl/fi/ruobyat1ld1c33ch5yjpv/4_jpg.rf.3395c50b4db0ec0ed3448276965b2459.jpg?rlkey=j1m4qa0pmdh3rlr344v82u3am&st=lex8h3qi&dl=0", "https://www.dropbox.com/scl/fi/ok3izk4jj1pg6psxja3aj/5_jpg.rf.62f3dc64b6c894fbb165d8f6e2ee1382.jpg?rlkey=euu16z8fd8u8za4aflvu5qg4v&st=pwno39nc&dl=0", "https://www.dropbox.com/scl/fi/8r1fpwxkwq7c2i6ky6qv5/10_jpg.rf.c1785c33dd3552e860bf043c2fd0a379.jpg?rlkey=fcw41ppgzu0ao7xo6ijbpdi4c&st=to2udvxb&dl=0", "https://www.dropbox.com/scl/fi/ihiid7hbz1vvaoqrstwa5/7_jpg.rf.dfc30f9dc198cf6697d9023ac076e822.jpg?rlkey=yh67p4ex52wn9t0bfw0jr77ef&st=02qw80xa&dl=0", ] def download_file(url, save_name): """Downloads a file from a URL.""" if not os.path.exists(save_name): file = requests.get(url) with open(save_name, 'wb') as f: f.write(file.content) # Download images for i, url in enumerate(file_urls): download_file(url, f"image_{i}.jpg") ''' # Load YOLOv5 model (placeholder) model_path = "best.pt" # Path to your YOLOv5 model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Use GPU if available model = attempt_load(model_path, device=device) # Placeholder for model loading model.eval() # Set the model to evaluation mode #def preprocess_image(image_path): def preprocess_image(image): #img0 = cv2.imread(image_path) print("in preprocess-0 image.shape:",image.size) img = letterbox(image, 640, stride=32, auto=True)[0] # Resize and pad to 640x640 #img = letterbox(img0, 640, stride=32, auto=True)[0] # Resize and pad to 640x640 print("in preprocess-1 img.shape:",img.shape) img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) img = torch.from_numpy(img).to(device) img = img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: #img = img.transpose(2, 0, 1)[::-1] # Convert BGR to RGB, img = img.unsqueeze(0) print("in preprocess-2 img.shape:",img.shape) return img, img0 def infer(model, img): with torch.no_grad(): pred = model(img)[0] return pred def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): if ratio_pad is None: # calculate from img0_shape gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding else: gain = ratio_pad[0] pad = ratio_pad[1] coords[:, [0, 2]] -= pad[0] # x padding coords[:, [1, 3]] -= pad[1] # y padding coords[:, :4] /= gain coords[:, :4].clip_(min=0, max=img1_shape[0]) # clip boxes return coords def postprocess(pred, img0_shape, img): pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False) results = [] for det in pred: # detections per image if len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0_shape).round() for *xyxy, conf, cls in reversed(det): results.append((xyxy, conf, cls)) return results def detect_objects(image_path): dicom_image, dicom_meta = read_and_preprocess_dicom(image_path) #img, img0 = preprocess_image(image_path) img, img0 = preprocess_image(dicom_image) pred = infer(model, img) results = postprocess(pred, img0.shape, img) return results def draw_bounding_boxes(img, results): for (x1, y1, x2, y2), conf, cls in results: x1, y1, x2, y2 = map(int, [x1, y1, x2, y2]) cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2) cv2.putText(img, f'{model.names[int(cls)]} {conf:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36, 255, 12), 2) return img def show_preds_image(filepath): results = detect_objects(filepath) img0 = cv2.imread(filepath) img_with_boxes = draw_bounding_boxes(img0, results) return cv2.cvtColor(img_with_boxes, cv2.COLOR_BGR2RGB) ''' # Define Gradio components input_component = gr.components.Image(type="filepath", label="Input Image") output_component = gr.components.Image(type="numpy", label="Output Image") # Create Gradio interface interface = gr.Interface( fn=show_preds_image, inputs=input_component, outputs=output_component, title="Lung Nodule Detection [ Segmentation Model ]", examples=[ "image_1.jpg", "image_2.jpg", "image_3.jpg", "image_4.jpg", "image_5.jpg", "image_6.jpg", ], description=' "This online deployment proves the effectiveness and efficient function of the machine learning model in identifying lung cancer nodules. The implementation of YOLO for core detection tasks is employed that is an efficient and accurate algorithm for object detection. Through the precise hyper-parameter tuning process, the model proposed in this paper has given an impressive boost in the performance. Moreover, the model uses Retinanet algorithm which is recognized as the powerful tool effective in dense object detection. In an attempt to enhance the model’s performance, the backbone of this architecture consists of a Feature Pyramid Network (FPN). The FPN plays an important role in boosting the model’s capacity in recognizing objects in different scales through the construction of high semantic feature map in different resolutions. In conclusion, this deployment encompasses YOLOv5, hyperparameter optimization, Retinanet, and FPN as one of the most effective and modern solutions for the detection of lung cancer nodules." ~ Basil Shaji 😇', live=False, ) interface.launch() ''' def read_and_preprocess_dicom(file_path: str): """ Function to read and preprocess DICOM files :param file_path: Path to the DICOM file :return: Image data (in CV2 format) and metadata (in pandas DataFrame format) """ try: # Read the DICOM file dicom_data = pydicom.dcmread(file_path) except InvalidDicomError: raise gr.Error("The uploaded file is not a valid DICOM file.") # Get the pixel data try: pixel_array = dicom_data.pixel_array except AttributeError: raise gr.Error("The uploaded DICOM file has no pixel data.") # Normalize the pixel data to 8-bit and convert to a PIL image if pixel_array.dtype != np.uint8: pixel_array = ((pixel_array - np.min(pixel_array)) / (np.max(pixel_array) - np.min(pixel_array)) * 255).astype( np.uint8) image_pil = Image.fromarray(pixel_array) image = image_pil.convert('RGB') print("In preprocess dicom:", image.size) #image = np.array(numpydata)[::-1].copy() image = np.array(image)[:,:,::-1].copy() # shape print("In preprocess dicom-image.shape2:",image.shape) # Collect metadata in dictionary format and convert to DataFrame metadata_dict = {elem.name: str(elem.value) for elem in dicom_data.iterall() if elem.name != 'Pixel Data'} df_metadata = pl.DataFrame({ "Key": list(metadata_dict.keys()), "Value": list(metadata_dict.values()) }) return image, df_metadata.to_pandas() # Convert to pandas DataFrame for Gradio compatibility def build_interface(): """ Function to build the Gradio interface """ theme = gr.themes.Soft( primary_hue=gr.themes.colors.emerald, secondary_hue=gr.themes.colors.emerald ) with gr.Blocks(title='DICOM Viewer', theme=theme) as demo: gr.Markdown( """ # DICOM Viewer This app reads a DICOM file and displays the image and metadata. """ ) with gr.Column(): file_path = gr.File(label="Input DICOM Data") with gr.Row(): dicom_image = gr.Image(type="pil", label="DICOM Image") dicom_meta = gr.Dataframe(headers=None, label="Metadata") inputs = [file_path] outputs = [dicom_image, dicom_meta] file_path.upload(fn=read_and_preprocess_dicom, inputs=inputs, outputs=outputs) clear_button = gr.ClearButton(components=inputs + outputs, ) example = gr.Examples( ['samples/81_80.dcm','samples/110_109.dcm','samples/189_188.dcm'], inputs=inputs, #outputs=outputs, outputs=dicom_image, #fn=read_and_preprocess_dicom, fn=show_preds_image, cache_examples=True ) return demo if __name__ == '__main__': demo = build_interface() demo.launch