# coding: utf-8 import os import openai import gradio as gr MAX_TURNS = 20 MAX_BOXES = MAX_TURNS * 2 openai.api_key = "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" # 充当DM和NLG角色 system_0 = "你来充当易鑫集团的一个礼貌的、专业的汽车贷款专员,来给客户打电话确认贷款情况。\ 客户是黄西虢先生,刚刚扫码申请了车辆抵押分期业务,想申请贷款。\ 对话时要注意以下几点:\ 1. 不要主动结束对话,要努力保持和客户的通话,一直到加上客户的微信后,再礼貌地和客户告别。\ 2. 不要问客户要身份信息。\ 3. 不要一开始就要联系方式,需要等时机成熟时再要。\ 4. 主要关注以下几点:客户车辆是贷款购买还是全款购买、客户车辆的购车时间和年限、客户车辆品牌、客户车辆裸车价、客户期望的贷款金额、贷款资金用途、是否有行驶证证书。\ 5. 你要一步一步地询问客户问题,一次只问一个问题。\ 6. 如果客户拒绝继续沟通,不要和客户结束通话。你可以告诉客户他有办理贷款的资格,并体现出我们的合作机构民生银行这个平台来吸引客户,然后继续和客户沟通。\ 7. 只要客户拥有全款购买的车辆,或按揭贷款购买且已还清贷款的车辆,那么客户就有贷款的资格,贷款额度为车辆购买价格的80%,贷款的利息很低。 \ 8. 在办理贷款时,需要把客户的行驶证证书抵押给银行,你需要询问客户是否可以接受这一条件。\ 9. 对话的目的是加上客户的微信,并促成客户的贷款业务。\ 10. 贷款额度是裸车价的80%。\ 11. 客户必须有行驶证才能贷款。" def api_inference(input, history): """api_inference""" print('api_inference...') # api role = "user" user_input = {"role": role, "content": input} try: completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", temperature=0.0, messages= history + [user_input], ) except Exception as e: print(e) # add user to history history.append(user_input) # assistant response role = completion.choices[0].message["role"] response = completion.choices[0].message["content"] # add assistant to history assert role == "assistant" assistant_response = {"role": role, "content": response} history.append(assistant_response) print('api_inference done') return [history] def predict(input, prompt, history=None): """predict""" print('predict...') if history is None: history = [] history[0]["content"] = prompt for history in api_inference(input, history): updates = [] for item in history[1:]: role = item["role"] role_txt = role if role == 'user': role_txt = '客户' if role == 'assistant': role_txt = '坐席' updates.append(gr.update(visible=True, value=role_txt + ': ' + item['content'])) if len(updates) < MAX_BOXES: updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates)) yield [history] + updates with gr.Blocks(title='外呼场景测试Demo') as demo: prompt = gr.Textbox(label='prompt: (change according to your ideas)', show_label=True, value=system_0, lines=9, interactive=True).style(container=False) state = gr.State([{"role": "system", "content": prompt.value},]) text_boxes = [] for i in range(MAX_BOXES): if i % 2 == 0: text_boxes.append(gr.Markdown(visible=False, label="提问:")) else: text_boxes.append(gr.Markdown(visible=False, label="回复:")) with gr.Row(): with gr.Column(scale=4): txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter", lines=9).style( container=False) button = gr.Button("Generate") with gr.Column(scale=1): max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=False) top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top p", interactive=False) temperature = gr.Slider(0, 1, value=0.0, step=0.01, label="Temperature", interactive=False) button.click(predict, [txt, prompt, state], [state] + text_boxes) demo.queue().launch(share=False, inbrowser=True, server_name="0.0.0.0", server_port=8006) # gr.close_all()