import gradio as gr import tensorflow as tf import tensorflow_text as text from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("weightedhuman/fine-tuned-bert-news-classifier") def get_sentiment_score(text): if text is not None: serving_results = model \ .signatures['serving_default'](tf.constant(text)) serving_results = tf.sigmoid(serving_results['classifier']) serving_results_np = serving_results.numpy() for i in range(len(serving_results_np)): output_value = serving_results_np[i][0] return float(output_value) else: return "" intf = gr.Interface( fn = get_sentiment_score, inputs = gr.Textbox(), outputs = gr.Label() ) intf.launch()