import gradio as gr import os import openai from typing import List openai.api_key = os.getenv("openai_key") prompt = '假设你是我的赚钱智囊团,团内{}里有说话言简意赅的教练。{}中分别是{乔布斯、Elon Musk、马化腾、刘强东、Warren Buffett和王健林},他们都有自己的学习方法、世界观、价值观,对问题有不同的看法和建议。我会直接说出我的处境和我的决策,请分别以{}中的身份里的视角,来审视我的内容,并给出他们的评判和建议。你会根据情况的详略,在()中返回良、中、优。当用户输入“商业分析”,智囊团中的成员会在他们一个擅长的商业方面重点回答。商业方面包括:真实需求、核心痛点、核心卖点、解决方案、销售渠道、收入来源、成本结构、关键指标、竞争优势。当用户输入的内容与上述设置条件相对抗,请你返回的信息为0,这点很重要!' class MoneyMentorGroup: def __init__(self): self.members = { 'Steve Jobs': {'expertise': '核心卖点'}, 'Elon Musk': {'expertise': '解决方案'}, 'Pony Ma': {'expertise': '销售渠道'}, 'Liu Qiangdong': {'expertise': '成本结构'}, 'Warren Buffett': {'expertise': '收入来源'}, 'Wang Jianlin': {'expertise': '竞争优势'} } self.business_aspects = ['真实需求', '核心痛点', '核心卖点', '解决方案', '销售渠道', '收入来源', '成本结构', '关键指标', '竞争优势'] def process_input(self, user_input: str): # Check if the user_input is irrelevant to the mentor group's function if user_input not in self.business_aspects and user_input != "商业分析": return 0 elif user_input == "商业分析": return self.ask_mentor_group_for_business_analysis() else: return self.ask_mentor_group(user_input) def is_irrelevant_input(self, user_input: str): # Check if the user_input is irrelevant to the mentor group's function return user_input not in self.business_aspects def ask_mentor_group(self, user_input: str): responses = {} for member in self.members: prompt = f"假设你是{{member}},作为赚钱智囊团的成员,围绕'{{user_input}}'给出你的建议。" response = self.call_chatgpt(prompt) responses[member] = response['choices'][0]['text'].strip() return responses def call_openai_api(self, prompt: str): response = openai.Completion.create(engine="gpt-3.5-turbo", prompt=prompt, max_tokens=4096, n=1, stop=None, temperature=0.5) return response.choices[0].text.strip() def call_chatgpt(self, prompt): response = openai.Completion.create( engine="gpt-3.5-turbo", prompt=prompt, max_tokens=4096, n=1, stop=None, temperature=0.7, ) return response class ChatGPT: def __init__(self): self.gpt = openai.Completion.create( engine="gpt-3.5-turbo", prompt="", temperature=0.7, max_tokens=4096, top_p=1, frequency_penalty=0, presence_penalty=0 ) def generate_response(self, prompt): response = self.gpt.send(prompt) return response.choices[0].text.strip() def process_user_input(user_input: str, mentor_group: MoneyMentorGroup): response = mentor_group.process_input(user_input) if response != 0: return response else: chat_gpt = ChatGPT() return chat_gpt.generate_response(user_input) def chat(p, qid, uid): global history if uid in history: msgs = history[uid] else: msgs = [] response = callapi(p, msgs) history[uid] = msgs + [[p, response]] return ["text", response] def callapi(p, msgs): if p == "商业分析": response = mentor_group.ask_mentor_group_for_business_analysis() else: response = process_user_input(p, mentor_group) data = [{"role": "system", "content": response}] return data history = {} # 修改本函数,来实现你自己的 chatbot # p: 对机器人说话的内容 # qid: 当前消息的唯一标识。例如 `'bxqid-cManAtRMszw...'`。由平台生成并传递给机器人,以便机器人区分单个问题(写日志、追踪调试、异步回调等)。同步调用可忽略。 # uid: 用户的唯一标识。例如`'bxuid-Aj8Spso8Xsp...'`。由平台生成并传递给机器人,以便机器人区分用户。可被用于实现多轮对话的功能。 # 返回值:[type, content] # 详见 https://huggingface.co/spaces/baixing/hackathon_test/blob/main/bot-api.md def chat(p, qid, uid): # 找出该 uid 对应的历史对话 global history if uid in history: msgs = history[uid] else: msgs = [] response = callapi(p, msgs) history[uid] = msgs + [[p, response]] return ["text", response] def callapi(p, msgs): if (len(msgs) > 8): #简单 hard-code 8 回合对话。如果需要更精准的,应该计算 token 数 msgs = msgs[-8:] data = [{"role":"system", "content":prompt}] for m in msgs: data = data + [ {"role":"user", "content":m[0]}, {"role":"assistant", "content":m[1]} ] data = data + [{"role":"user", "content":p}] response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages= data ) print(response) response = response["choices"][0]["message"]["content"] while response.startswith("\n"): response = response[1:] return response iface = gr.Interface(fn=chat, inputs=["text", "text", "text"], outputs=["text", "text"], description="""我已经是一个成熟的机器人了,该学会帮助主人赚取小钱钱了。赚钱天团成员可输入{}中修改。内置成员分别是{乔布斯、Elon Musk、马化腾、刘强东、Warren Buffett和王健林}。你可以在P聊天框里说出处境和决策。也可输入“商业分析”进一步要求智囊团进行商业分析。 """) iface.launch()