import gradio as gr from gradio_molecule2d import molecule2d from synformer.chem.mol import Molecule from synformer.sampler.analog.parallel import run_sampling_one_cpu from huggingface_hub import hf_hub_download REPO_ID = "whgao/synformer" CKPT_FILENAME = "sf_ed_default.ckpt" MAT_FILENAME = "matrix.pkl" FPI_FILENAME = "fpindex.pkl" ckpt_path = hf_hub_download(REPO_ID, CKPT_FILENAME) mat_path = hf_hub_download(REPO_ID, MAT_FILENAME) fpi_path = hf_hub_download(REPO_ID, FPI_FILENAME) last_result = {} # Function to clear all inputs def clear_inputs(): # Return default or empty values to reset each input component return None, 4, 8, 0 def sample(smi, search_width, exhaustiveness): result_df = run_sampling_one_cpu( input=Molecule(smi), model_path=ckpt_path, mat_path=mat_path, fpi_path=fpi_path, search_width=search_width, exhaustiveness=exhaustiveness, time_limit=180, max_results=100, max_evolve_steps=24, sort_by_scores=True, ) result_df = result_df[:30] last_result["results_df"] = result_df smiles = result_df.iloc[0]["smiles"] similarity = result_df.iloc[0]["score"] synthesis = result_df.iloc[0]["synthesis"] return smiles, similarity, synthesis, gr.update(maximum=len(result_df)-1) def select_from_output(index): df_results = last_result["results_df"] return df_results.iloc[index]["smiles"], df_results.iloc[index]["score"], df_results.iloc[index]["synthesis"] examples = [ "COc1ccc(-c2ccnc(Nc3ccccc3)n2)cc1", "Nc1cccc(S(=O)(=O)N2CCCN(S(=O)(=O)c3ccc4c(c3)OCCO4)CC2)c1", "CN1C[C@H](Nc2cnn(C)c(=O)c2)C[C@H](c2ccccc2)C1", "CC[C@@H]1OC[C@@]23Cc4cc(F)c(N)cc4-c4ccc5c(c42)C(=CC(F)(F)O5)[C@@H]1C3=O", "O=C(OCC(=O)N1[C@H](C(=O)O)C[C@@H]2CCCC[C@@H]21)[C@H](Cc1cbccc1)NC(I)c1bcccc1", ] with gr.Blocks() as demo: gr.Markdown(f""" # Demo of [SynFormer](https://github.com/wenhao-gao/synformer/tree/main) This page demonstrates the SynFormer-ED model, which takes a molecule as input—regardless of its synthetic accessibility—and outputs identical or approximate molecules along with their associated synthetic paths. This demo runs on CPUs and typically takes about one minute per run on local machine, but can be accelerated by reducing the search width and exhaustiveness. The model may take longer if the server is busy. Since the sampling is stochastic, you may run the demo multiple times to explore different results, with a maximum of 30 molecules displayed at once. To learn more about SynFormer’s architecture and applications, check out [our paper](https://github.com/wenhao-gao/synformer/tree/main). Authors: [Wenhao Gao](mailto:gaowh19@gmail.com), Shitong Luo, Connor W. Coley """) with gr.Row(): with gr.Column(scale=0.5): input_molecule = molecule2d(label="SMILES Input") slider_1 = gr.Slider(minimum=1, maximum=16, step=1, label="Search Width", value=4) slider_2 = gr.Slider(minimum=1, maximum=32, step=1, label="Exhaustiveness", value=8) with gr.Row(): with gr.Column(scale=0.5): run_btn = gr.Button("Run on sample") with gr.Column(scale=0.5): clear_btn = gr.Button("Clear") with gr.Column(scale=0.5): index_slider = gr.Slider(minimum=0, maximum=10, step=1, label="Select Output Index", value=0, interactive=True) output_similarity = gr.Text(label="Tanimoto Similarity") output_molecule = molecule2d(label="Output") output_synpath = gr.Textbox(label="Synthetic Path") with gr.Row(): with gr.Column(scale=1): gr.Markdown("### Examples") gr.Examples( examples = examples, inputs = [input_molecule] ) run_btn.click( fn=sample, inputs=[ input_molecule, slider_1, slider_2 ], outputs=[ output_molecule, output_similarity, output_synpath, index_slider ], api_name="Run" ) index_slider.change( fn=select_from_output, inputs=[index_slider], outputs=[output_molecule, output_similarity, output_synpath], ) clear_btn.click( fn=clear_inputs, inputs=[], outputs=[input_molecule, slider_1, slider_2, index_slider] ) demo.launch()