import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load your model and tokenizer locally model_name = "william590y/AshishGPT" # Replace with your Hugging Face model name print("Loading model and tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") print("Model loaded successfully!") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Prepare the input context from history input_text = system_message + "\n" for user_input, bot_response in history: input_text += f"User: {user_input}\nAssistant: {bot_response}\n" input_text += f"User: {message}\nAssistant:" # Tokenize input and generate response inputs = tokenizer(input_text, return_tensors="pt", truncation=True).to("cuda") outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract the assistant's response response = response[len(input_text):].strip() return response # Set up the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()