#!/usr/bin/env python3 # Copyright 2023 (authors: Feiteng Li) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from dataclasses import asdict, dataclass from typing import Any, Dict, List, Optional, Pattern, Union import numpy as np import torch import torchaudio from encodec import EncodecModel from encodec.utils import convert_audio from phonemizer.backend import EspeakBackend from phonemizer.backend.espeak.language_switch import LanguageSwitch from phonemizer.backend.espeak.words_mismatch import WordMismatch from phonemizer.punctuation import Punctuation from phonemizer.separator import Separator try: from pypinyin import Style, pinyin from pypinyin.style._utils import get_finals, get_initials except Exception: pass class PypinyinBackend: """PypinyinBackend for Chinese. Most codes is referenced from espnet. There are two types pinyin or initials_finals, one is just like "ni1 hao3", the other is like "n i1 h ao3". """ def __init__( self, backend="initials_finals", punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(), ) -> None: self.backend = backend self.punctuation_marks = punctuation_marks def phonemize( self, text: List[str], separator: Separator, strip=True, njobs=1 ) -> List[str]: assert isinstance(text, List) phonemized = [] for _text in text: _text = re.sub(" +", " ", _text.strip()) _text = _text.replace(" ", separator.word) phones = [] if self.backend == "pypinyin": for n, py in enumerate( pinyin( _text, style=Style.TONE3, neutral_tone_with_five=True ) ): if all([c in self.punctuation_marks for c in py[0]]): if len(phones): assert phones[-1] == separator.syllable phones.pop(-1) phones.extend(list(py[0])) else: phones.extend([py[0], separator.syllable]) elif self.backend == "pypinyin_initials_finals": for n, py in enumerate( pinyin( _text, style=Style.TONE3, neutral_tone_with_five=True ) ): if all([c in self.punctuation_marks for c in py[0]]): if len(phones): assert phones[-1] == separator.syllable phones.pop(-1) phones.extend(list(py[0])) else: if py[0][-1].isalnum(): initial = get_initials(py[0], strict=False) if py[0][-1].isdigit(): final = ( get_finals(py[0][:-1], strict=False) + py[0][-1] ) else: final = get_finals(py[0], strict=False) phones.extend( [ initial, separator.phone, final, separator.syllable, ] ) else: assert ValueError else: raise NotImplementedError phonemized.append( "".join(phones).rstrip(f"{separator.word}{separator.syllable}") ) return phonemized class TextTokenizer: """Phonemize Text.""" def __init__( self, language="en-us", backend="espeak", separator=Separator(word="_", syllable="-", phone="|"), preserve_punctuation=True, punctuation_marks: Union[str, Pattern] = Punctuation.default_marks(), with_stress: bool = False, tie: Union[bool, str] = False, language_switch: LanguageSwitch = "keep-flags", words_mismatch: WordMismatch = "ignore", ) -> None: if backend == "espeak": phonemizer = EspeakBackend( language, punctuation_marks=punctuation_marks, preserve_punctuation=preserve_punctuation, with_stress=with_stress, tie=tie, language_switch=language_switch, words_mismatch=words_mismatch, ) elif backend in ["pypinyin", "pypinyin_initials_finals"]: phonemizer = PypinyinBackend( backend=backend, punctuation_marks=punctuation_marks + separator.word, ) else: raise NotImplementedError(f"{backend}") self.backend = phonemizer self.separator = separator def to_list(self, phonemized: str) -> List[str]: fields = [] for word in phonemized.split(self.separator.word): # "ɐ m|iː|n?" ɹ|ɪ|z|ɜː|v; h|ɪ|z. pp = re.findall(r"\w+|[^\w\s]", word, re.UNICODE) fields.extend( [p for p in pp if p != self.separator.phone] + [self.separator.word] ) assert len("".join(fields[:-1])) == len(phonemized) - phonemized.count( self.separator.phone ) return fields[:-1] def __call__(self, text, strip=True) -> List[List[str]]: if isinstance(text, str): text = [text] phonemized = self.backend.phonemize( text, separator=self.separator, strip=strip, njobs=1 ) return [self.to_list(p) for p in phonemized] def tokenize_text(tokenizer: TextTokenizer, text: str) -> List[str]: phonemes = tokenizer([text.strip()]) return phonemes[0] # k2symbols def remove_encodec_weight_norm(model): from encodec.modules import SConv1d from encodec.modules.seanet import SConvTranspose1d, SEANetResnetBlock from torch.nn.utils import remove_weight_norm encoder = model.encoder.model for key in encoder._modules: if isinstance(encoder._modules[key], SEANetResnetBlock): remove_weight_norm(encoder._modules[key].shortcut.conv.conv) block_modules = encoder._modules[key].block._modules for skey in block_modules: if isinstance(block_modules[skey], SConv1d): remove_weight_norm(block_modules[skey].conv.conv) elif isinstance(encoder._modules[key], SConv1d): remove_weight_norm(encoder._modules[key].conv.conv) decoder = model.decoder.model for key in decoder._modules: if isinstance(decoder._modules[key], SEANetResnetBlock): remove_weight_norm(decoder._modules[key].shortcut.conv.conv) block_modules = decoder._modules[key].block._modules for skey in block_modules: if isinstance(block_modules[skey], SConv1d): remove_weight_norm(block_modules[skey].conv.conv) elif isinstance(decoder._modules[key], SConvTranspose1d): remove_weight_norm(decoder._modules[key].convtr.convtr) elif isinstance(decoder._modules[key], SConv1d): remove_weight_norm(decoder._modules[key].conv.conv) class AudioTokenizer: """EnCodec audio.""" def __init__( self, device: Any = None, ) -> None: # Instantiate a pretrained EnCodec model model = EncodecModel.encodec_model_24khz() model.set_target_bandwidth(6.0) remove_encodec_weight_norm(model) if not device: device = torch.device("cpu") if torch.cuda.is_available(): device = torch.device("cuda:0") self._device = device self.codec = model.to(device) self.sample_rate = model.sample_rate self.channels = model.channels @property def device(self): return self._device def encode(self, wav: torch.Tensor) -> torch.Tensor: return self.codec.encode(wav.to(self.device)) def decode(self, frames: torch.Tensor) -> torch.Tensor: return self.codec.decode(frames) def tokenize_audio(tokenizer: AudioTokenizer, audio): # Load and pre-process the audio waveform if isinstance(audio, str): wav, sr = torchaudio.load(audio) else: wav, sr = audio wav = convert_audio(wav, sr, tokenizer.sample_rate, tokenizer.channels) wav = wav.unsqueeze(0) # Extract discrete codes from EnCodec with torch.no_grad(): encoded_frames = tokenizer.encode(wav) return encoded_frames # @dataclass # class AudioTokenConfig: # frame_shift: Seconds = 320.0 / 24000 # num_quantizers: int = 8 # # def to_dict(self) -> Dict[str, Any]: # return asdict(self) # # @staticmethod # def from_dict(data: Dict[str, Any]) -> "AudioTokenConfig": # return AudioTokenConfig(**data) # # # class AudioTokenExtractor(FeatureExtractor): # name = "encodec" # config_type = AudioTokenConfig # # def __init__(self, config: Optional[Any] = None): # super(AudioTokenExtractor, self).__init__(config) # self.tokenizer = AudioTokenizer() # # def extract( # self, samples: Union[np.ndarray, torch.Tensor], sampling_rate: int # ) -> np.ndarray: # if not isinstance(samples, torch.Tensor): # samples = torch.from_numpy(samples) # if sampling_rate != self.tokenizer.sample_rate: # samples = convert_audio( # samples, # sampling_rate, # self.tokenizer.sample_rate, # self.tokenizer.channels, # ) # if len(samples.shape) == 2: # samples = samples.unsqueeze(0) # else: # raise ValueError() # # device = self.tokenizer.device # encoded_frames = self.tokenizer.encode(samples.detach().to(device)) # codes = encoded_frames[0][0] # [B, n_q, T] # if True: # duration = round(samples.shape[-1] / sampling_rate, ndigits=12) # expected_num_frames = compute_num_frames( # duration=duration, # frame_shift=self.frame_shift, # sampling_rate=sampling_rate, # ) # assert abs(codes.shape[-1] - expected_num_frames) <= 1 # codes = codes[..., :expected_num_frames] # return codes.cpu().squeeze(0).permute(1, 0).numpy() # # @property # def frame_shift(self) -> Seconds: # return self.config.frame_shift # # def feature_dim(self, sampling_rate: int) -> int: # return self.config.num_quantizers # # def pad_tensor_list(self, tensor_list, device, padding_value=0): # # 计算每个张量的长度 # lengths = [tensor.shape[0] for tensor in tensor_list] # # 使用pad_sequence函数进行填充 # tensor_list = [torch.Tensor(t).to(device) for t in tensor_list] # padded_tensor = torch.nn.utils.rnn.pad_sequence( # tensor_list, batch_first=True, padding_value=padding_value # ) # return padded_tensor, lengths # # def extract_batch(self, samples, sampling_rate, lengths) -> np.ndarray: # samples = [wav.squeeze() for wav in samples] # device = self.tokenizer.device # samples, lengths = self.pad_tensor_list(samples, device) # samples = samples.unsqueeze(1) # # if not isinstance(samples, torch.Tensor): # samples = torch.from_numpy(samples) # if len(samples.shape) != 3: # raise ValueError() # if sampling_rate != self.tokenizer.sample_rate: # samples = [ # convert_audio( # wav, # sampling_rate, # self.tokenizer.sample_rate, # self.tokenizer.channels, # ) # for wav in samples # ] # # Extract discrete codes from EnCodec # with torch.no_grad(): # encoded_frames = self.tokenizer.encode(samples.detach().to(device)) # encoded_frames = encoded_frames[0][0] # [B, n_q, T] # batch_codes = [] # for b, length in enumerate(lengths): # codes = encoded_frames[b] # duration = round(length / sampling_rate, ndigits=12) # expected_num_frames = compute_num_frames( # duration=duration, # frame_shift=self.frame_shift, # sampling_rate=sampling_rate, # ) # batch_codes.append(codes[..., :expected_num_frames]) # return [codes.cpu().permute(1, 0).numpy() for codes in batch_codes] if __name__ == "__main__": model = EncodecModel.encodec_model_24khz() model.set_target_bandwidth(6.0) samples = torch.from_numpy(np.random.random([4, 1, 1600])).type( torch.float32 ) codes_raw = model.encode(samples) remove_encodec_weight_norm(model) codes_norm = model.encode(samples) assert torch.allclose(codes_raw[0][0], codes_norm[0][0])